+7(499) 136 06 90

+7(495) 704-31-86

[email protected]

Что такое электроды


Электроды | это... Что такое Электроды?

Электродами называют части проводников гальванической цепи, погруженные в вещества (см. Электролит), подвергаемые действию гальванического тока. Э. устраивают чаще всего из твердых, проводящих ток веществ, т. е. из металла или угля. Жидкие Э. встречаются нередко в лабораторной и заводской практике, примером чему могут служить ртутные Э., а также Э. из других расплавленных металлов. Термин электрод предложен Фарадеем, чтобы им заменить для частных случаев более общий термин "полюсы". Отсюда следует, что электрод может быть характера положительного полюса; такой электрод Фарадей назвал анодом, а электрод характера отрицательного полюса получил название катода. В зависимости от тех химических превращений, которые совершаются при прохождении тока на границе электрод | электролит, Э. бывают обратимые и необратимые. Границу эту принято графически обозначать выше поставленной вертикальной чертой, как и вообще границу двух веществ, на которой могут развиваться электровозбудительные силы. Обратимым электродом называют такой, у которого в месте соприкосновения электрода с электролитом при перемене направления тока совершается химическое прекращение, как раз обратное тому, что совершалось при первоначальном направлении тока. Э., не удовлетворяющие этому требованию, носят название необратимых. Пример обратимого электрода: тяжелый металл (медь цинк, кадмий и др.), погруженный в раствор соли того же металла. При прохождении тока от меди к медному купоросу — растворяется медь, при обратном направлении тока медь осаждается. Кроме качественных требований, обратимый электрод часто должен удовлетворять количественным требованиям. Такой случай наблюдается для газо-платиновых электродов, т. е. для платины, погруженной частью в раствор электролита, частью же в атмосферу газа, выделяющегося при электролизе, хотя бы, например, в атмосферу водорода. Если сила обратного тока будет такова, что у водород-платинового анода будет происходить только растворение водорода, но не будет выделения кислорода, такой электрод обратим для водород-платинового катода. Обратимые металлические или газо-металлические электроды носят название электродов первого рода. Э. первого рода обратимы для катионов Cu", Zn", Cd", H' и т. д. (см. Электролитическая диссоциация), а газо-металлические — для О", Cl' и др. Э. второго рода являются обратимыми для анионов Cl', Br', J' и др. На существование обратимости в этих электродах было впервые указано Нернстом, он же дал и теорию этих электродов. Они представляют металлы, покрытые слоем нерастворимых солей этих металлов, погруженные в раствор соли с тем же анионом, как и у нерастворимой соли. Примером может служить ртутный электрод, покрытый слоем каломели (Hg2Cl2), или серебряный электрод, покрытый слоем хлористого серебра (AgCl), погруженные в раствор хлористого калия. При прохождении тока в одном направлении, когда электрод является анодом, выделяющийся ион хлора, соединяясь с металлом электрода, образует нерастворимую соль, т. е. как бы хлор "осаждается током на электроде"; когда же электрод становится катодом, хлор нерастворимой соли переходит в раствор. Эта качественная сторона явлений не дает, конечно, полной картины происходящих процессов и говорит о том, что в таком электроде хлор является как бы металлом, отличающимся только знаком электричества его иона, что важно только для общей характеристики явления. Теория же явления, дающая точное представление, основана на химическом взаимодействии веществ у электрода (см. Ostwald, "Lehrbuch der Allg. Chemie", 878 стр.). Еще сложнее теория обратимых электродов 3-го рода. Эти Э. предложены Лютером, как обратимые для металлов, выделяющих водород из воды и, следовательно, не могущих служить в металлическом состоянии электродами. Остановимся на одном примере обратимого Э. для кальция (Са). Свинцовая пластинка, покрытая слоем смеси солей сернокислого свинца и сернокислого кальция, погруженная в раствор, содержащий хлористый кальций и насыщенный сернокислым свинцом и сернокислым кальцием, представляет, по Лютеру, обратимый Э. для кальция.

Форма и величина электродов бывает самая разнообразная, в зависимости от тех требований, которым они должны удовлетворять (см. фиг. электродов в статье Электрохимический анализ). Существенной для электрода является та его поверхность, через которую ток попадает в электролит.

Если ток электричества (J — сила тока) равномерно распределен по всей поверхности электрода (S), тогда величина J/S носит название плотности тока для данного электрода. Для электрохимических целей часто необходимо хотя бы приблизительное знание этой величины; поэтому вычисляют эту величину делением J на S даже и в таких случаях, когда ток только приблизительно равномерно распределен по электроду. За единицу поверхности электрода принимают 100 квадратных сантиметров и обозначают N.D.100, для измерения же J — обычную величину, т. е. силу тока, равную одному амперу. Так что N.D. 100 = 1,5 А обозначает, что через поверхность электрода в 100 квадратных сантиметров проходит ток силой в 1,5 ампера. Из специальных электродов должно упомянуть о каломельном обратимом электроде второго рода, получившем большое распространением, благодаря постоянству и простой конструкции.

В сосуд (см. фиг.) с впаянной снизу платиновой проволокой, на дне которого находится ртуть, покрытая слоем каломели, наливается нормальный раствор хлористого калия, т. е. 74,6 г в литре раствора, или 0,1 нормальный. Электровозбудительная сила на границе этого электрода и электролита, по Оствальду, в первом случае равна 0,56 вольт, во втором 0,616 вольт. Электрод этот носит название "постоянный каломельный электрод" и применяется в электрохимии (см. статью Электрохимия).

Вл. Кистяковский.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

ХиМиК.ru - ЭЛЕКТРОДЫ - Химическая энциклопедия

А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ЭЛЕКТРОДЫ в электрохимии, электронно-проводящие фазы, контактирующие с ионным проводником (электролитом). Часто под электродом понимают лишь одну электронно-проводящую фазу. При пропускании тока от внеш. источника через систему из двух электродов, соединенных друг с другом через электролит, на электродах протекают два процесса: заряжение двойного электрического слоя и электрохим. р-ция. В отличие от фазовых контактов металл-металл, металл-полупроводник, полупроводник-полупроводник и т. п. на границе фаз, составляющих электрохим. систему, вид носителей тока меняется, т. к. в электролите ток переносится ионами, а в электронно-проводящей фазе - электронами. Непрерывность прохождения тока через границу фаз в этом случае обеспечивается электродной р-цией. Электрод наз. анодом, если на его пов-сти преобладает р-ция, приводящая к генерированию электронов, т. е. происходит окисление в-в, содержащихся в электролите, либо ионизация металла анода. Электрод наз. катодом, если с его пов-сти электроны металла переходят на частицы реагирующих в-в, к-рые при этом восстанавливаются.

Классификация электродов проводится по природе окислителей и восстановителей, к-рые участвуют в электродном процессе. Электродом 1-го рода наз. металл (или неметалл), погруженный в электролит, содержащий ионы этого же элемента. Металл электрода является восстановленной формой в-ва, а его окисленной формой - простые или комплексные ионы этого же металла (см. Электрохимическая кинетика). Напр., для системы Сu Сu 2+ + 2е, где е - электрон, восстановленной формой является Сu, а окисленной - ионы Сu2+. Соответствующее такому электродному процессу Нернста уравнение для электродного потенциала Е имеет вид:

где E° - стандартный потенциал при т-ре Т;- термодинамич. активность ионов Сu2+; F - постоянная Фарадея; R - газовая постоянная. К электродам 1-го рода относятся амальгамные электроды, т. к. для них восстановленная форма - амальгама металла, а окисленная - ионы этого же металла. Напр., для амальгамы таллия устанавливается равновесие: Tl+ + e(Hg)Tl(Hg). В такой системе могут изменяться концентрации и окисленной, и восстановленной форм, поэтому ур-ние Нернста имеет вид:

где aтl, - термодинамич. активность таллия в амальгаме.
Электроды 2-го рода- системы из металла М, покрытого слоем его же труднорастворимой соли (или оксида) и погруженного в р-р, содержащий анионы этой соли (для оксида -ионы ОН-). Окисленной формой является соль а восстановленная форма представлена металлом М и анионом Az-:

гдеz - зарядовое число иона. В системе устанавливается равновесие между атомами М и анионами Az-в р-ре, к-рое включает два "парциальных" равновесия: между металлом и катионом соли и между анионом соли в ее твердой фазе и анионом в р-ре. Такие электроды наз. обратимыми по аниону.
Ур-ние Нернста имеет вид:

К электродам 2-го рода относятся многие электроды сравнения, напр. каломельный, хлорсеребряный, оксидно-ртутный.
Электроды 3-го рода- системы из металла, контактирующего с двумя труднорастворимыми солями. В результате электрохим. р-ции на электроде менее растворимая соль превращается в более растворимую, а потенциал электрода определяется термодинамич. активностью катионов более растворимой соли. Так, в системе Рb2+| РbС12, AgCl, процесс Ag происходит

Металл электрода может не участвовать в р-циях, а служить лишь передатчиком электронов от восстановленной формы в-ва к окисленной; такие электроды наз. окислительно-восстановительными или редокс-электродами. Напр., платиновый электрод в р-ре, содержащем ионы [Fe(CN)6]4- и [Fe(CN)6]3-, осуществляет перенос электронов между этими ионами в качестве передатчика (медиатора). Среди окислит.-восстановит. электродов выделяют газовые электроды, состоящие из химически инертного металла (обычно Pt), к к-рому подводится электрохимически активный газ (напр. , Н2 или С12). Молекулы газа адсорбируются на пов-сти металла, распадаясь на адсорбиров. атомы, к-рые непосредственно участвуют в переносе электронов через границу раздела фаз. Наиб. распространен водородный электрод,на пов-сти к-рого образуются адсорбир. атомы Надс и устанавливается равновесие: Н2адс+ + 2е. Разл. типы электродов можно объединить в рамках т. наз. концепции электронного равновесия на границе металл-электролит, согласно к-рой каждому равновесному электродному потенциалу соответствует определенная термодинамич. активность электронов в электролите.
Электроды наз. идеально поляризуемым, если вследствие термодинамич. или кинетич. причин переход электронов через межфазную границу невозможен. При изменении потенциала такого электрода происходит только изменение строения двойного электрич. слоя, что сопровождается протеканием тока заряжения, спадающего до нуля, когда перестройка двойного электрич. слоя заканчивается (см. Ток обмена). Для неполяризуемых, или обратимых, электродов переход электронов через границу фаз, напротив, незаторможен, и при пропускании тока через такой электрод его потенциал практически не изменяется.
По функциям в электрохим. системе электроды подразделяют на рабочие, вспомогательные и электроды сравнения. Рабочим наз. электрод, на к-ром происходит исследуемый электрохим. процесс. Вспомогат. электрод (или противоэлектрод) обеспечивает возможность пропускания тока через электрохим. ячейку, а электрод сравнения - возможность измерения потенциала рабочего электрода. Специфика широко используемых в электрохимии жидких электродов (ртуть, амальгамы, галлий, жидкие сплавы на основе Ga -галламы, расплавы металлов и т. п.) связана с идеальной гладкостью их пов-сти, истинная площадь к-рой совпадает с ее геом. величиной, а также с энергетич. однородностью и изотропностью св-в пов-сти электродов и возможностью растворения выделяющихся металлов в материале электрода.
На практике электроды классифицируют по хим. природе материала (металлические, неметаллические, оксидные, электроды из соед. с ковалентной связью, углеграфитовые и т.д.), форме (сферические, плоские, цилиндрические, дисковые и т. д.), условиям функционирования (неподвижные, вращающиеся и т. п.), размерам (микро- и ультрамикроэлектроды), пористости, гидрофильности, участию электродного материала в электродном процессе (расходуемые и нерасходуемые) и др. признакам. Использование капельного ртутного электрода лежит в основе полярографии. Вращающийся дисковый электрод представляет интерес как система, для к-рой существует строгое решение диффузионной кинетич. задачи. К особо практически важным электродам следует отнести каталитически активные и высоко коррозионностойкие оксидные рутениево-титановые аноды (ОРТА), применение к-рых революционизировало самое широкомасштабное электрохим. произ-во - электролитич. получение хлора и щелочей.

Модифицирование электроды, получившее широкое распространение в электрокатализе, произ-ве химических источников тока, электрохимических сенсоров и т. п., основано как на физических (ионная имплантация, разрыхление пов-сти, выращивание монокристаллич. граней, создание монокристаллич. структур, физ. адсорбция ионов и молекул и др.), так и хим. методах. В частности, химически модифицированные электроды представляют собой проводящий или полупроводниковый материал, покрытый мономолекулярными (в т. ч. субатомными), полимолекулярными, ионными, полимерными слоями, в результате чего электрод проявляет хим., электрохим. и/или оптич. св-ва слоя. Хим. модифицирование достигается хемосорбцией на пов-сти электрода ионов и молекул, ковалентным связыванием разл. агентов с поверхностными атомными группами, покрытием пов-сти орг., металлорг. или неорг. полимерными слоями, созданием композитов из электродного материала и в-ва -модификатора.

Микроэлектроды имеют по крайней мере один из размеров настолько малый, что св-ва электродов оказываются размерно зависимыми. Размеры микроэлектродов лсжат в интервале 0,1-50 мкм, миним. площадь составляет 10-14 м2 (ультрамикроэлектроды), тогда как в большинстве электроаналит. экспериментов применяют электроды с площадью 5 х 10-5м2, в лаб. электросинтезе - 10-2 м2. Осн. преимущество микроэлектродов - возможность снизить с их помощью диффузионные ограничения скорости электродного процесса и, следовательно, изучать кинетику очень быстрых электродных р-ций. Из-за малой величины токов электрохим. ячейки с микроэлектродами характеризуются незначительным омич. падением потенциала, что позволяет изучать системы с высокими концентрациями реагирующих частиц, обычно используемые в технол. процессах, применять высокие скорости сканирования потенциала при вольтамперометрич. измерениях, проводить работы в плохо проводящих средах и т. п. Микроэлектроды используют для анализа ультрамалых проб, исследования процессов в живых организмах, в клинич. целях. Ультрамикроэлектроды применяют в туннельной сканирующей микроскопии и в электрохим. нанотехнологии.
См. также Ионоселективные электроды, Псевдоожиженный электрод, Суспензионный электрод.

Лит.: Дамаскин Б.Б., Петрий О. А., Электрохимия, М., 1987; Багоцкий B.C., Основы электрохимии, М., 1988.

О.А. Петрий.

А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Электрод - Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рис. 1. Упрощенная схема гальванического элемента с цинковым и медным электродами для замыкания цепи через неметаллическую среду.

Электрод — это проводник, который используется для контакта с неметаллической частью цепи. [1] Электроды обычно используются в электрохимических элементах (см. рис. 1), полупроводниках, таких как диоды, и в медицинских устройствах. Электрод – это место, где происходит перенос электрона.

Электрод классифицируется как катод или анод в зависимости от типа протекающей химической реакции. Если на электроде происходит реакция окисления (окисление представляет собой потерю электронов), то электрод классифицируется как анод. Если на электроде происходит реакция восстановления (восстановление — это присоединение электронов), то электрод классифицируется как катод. [2] Обычный ток в чем-то вроде разряжающейся батареи поступает в устройство через его анод и выходит из устройства через катод. [3]

Различают активных электродов и инертных электродов. Например, магниевый электрод обычно является активным электродом, поскольку он участвует в окислительно-восстановительной (сокращенно «окислительно-восстановительной») реакции. Платиновый электрод обычно является инертным электродом, поскольку он не участвует в окислительно-восстановительной реакции. Инертный электрод химически неактивен и присутствует только для того, чтобы ток мог протекать через электрохимическую ячейку. [2]

Анод и катод

Рис. 2. Упрощенная схема, показывающая анод и катод топливного элемента. Обратите внимание, что стрелки на диаграмме показывают поток электронов. Обычный ток будет в противоположном направлении.

Есть много способов понять, какой электрод является анодом, а какой катодом в электрохимической системе. Иногда аноды и катоды описываются как отрицательные и положительные электроды. Однако это может сбивать с толку, поскольку аноды и катоды могут оба могут быть отрицательными или положительными в зависимости от того, производит ли электрохимическая ячейка электричество или потребляет электричество. Таким образом, самый полезный способ думать об этом - это отношение к потоку электронов. Как было сказано ранее, анод относится к электроду, на котором происходит окисление или где электроны вытекают . Катод относится к электроду, на котором происходит восстановление или где электроны текут в . [4]

Аноды и катоды находятся в электрических компонентах с потенциалом ячейки, включая батареи, топливные элементы, фотогальванические элементы, электролитические элементы и диоды.

Для дополнительной информации

Для получения дополнительной информации см. соответствующие страницы ниже:

  • Диод
  • Постоянный ток
  • Адаптер переменного тока в постоянный
  • Фотогальванический элемент
  • Электрический ток
  • Или исследуйте случайную страницу!

Ссылки

  1. Электрод [Онлайн]. Доступно: http://www.merriam-webster.com/dictionary/electrode
  2. 2. 0 2.1 Химия, Университет Райса, 2015. [Онлайн]. Доступно: https://web.ung.edu/media/Chemistry2/Chemistry-LR.pdf
  3. Как определить анод и катод [онлайн]. Доступно: http://www.av8n.com/physics/anode-cathode.htm
  4. ↑ О'Хейр, Р., Ча, С., Колелла, В., и Принц, Ф. Б. (2016). Основы топливных элементов.

Объяснитель: Что такое электрод?

анод : Отрицательная клемма батареи и положительно заряженный электрод в электролитической ячейке. Он притягивает отрицательно заряженные частицы. Анод является источником электронов для использования вне батареи, когда она разряжается.

батарея : Устройство, которое может преобразовывать химическую энергию в электрическую.

катод : Положительная клемма батареи и отрицательно заряженный электрод в электролитической ячейке. Он притягивает положительно заряженные частицы. Во время разряда катод притягивает электроны снаружи батареи.

химическое вещество : Вещество, состоящее из двух или более атомов, которые объединяются (связываются) в фиксированной пропорции и структуре. Например, вода — это химическое вещество, образующееся при соединении двух атомов водорода с одним атомом кислорода. Его химическая формула H 2 O. Химический также может быть прилагательным для описания свойств материалов, которые являются результатом различных реакций между различными соединениями.

химическая реакция : Процесс, который включает перестройку молекул или структуры вещества в противоположность изменению физической формы (например, из твердого состояния в газообразное).

проводящий : (в физике и технике) Процесс или способность некоторой структуры направлять через нее поток некоторого тока (особенно электрического тока).

проводник : (в физике и технике) Материал, через который может протекать электрический ток.

медь : Металлический химический элемент того же семейства, что и серебро и золото. Поскольку он является хорошим проводником электричества, он широко используется в электронных устройствах.

космос : (прил. космический) Термин, относящийся ко Вселенной и всему, что в ней есть.

текущая : Жидкость — например, вода или воздух, — которая движется в узнаваемом направлении. (в электричестве) Поток электричества или количество заряда, проходящего через какой-либо материал за определенный период времени.

электрическая цепь : Путь, по которому текут электроны. Точка, в которой эти электроны входят в электрическую цепь, называется «источником».

электричество : Поток заряда, обычно возникающий в результате движения отрицательно заряженных частиц, называемых электронами.

электрохимический : Прилагательное, обозначающее процессы, посредством которых электричество влияет на химические изменения в некоторых веществах, а также то, как химическая энергия может быть преобразована в электрическую энергию или наоборот.

электрод : Устройство, которое проводит электричество и используется для установления контакта с неметаллической частью электрической цепи или контактирует с чем-то, через что проходит электрический сигнал. (в электронике) Часть полупроводникового устройства (например, транзистора), которая либо высвобождает, либо собирает электроны или дырки, либо может управлять их движением.

электролиз : Использование электрического тока для разделения химических веществ в растворе. Ток заставляет ионы двигаться к электродам — катоду или аноду — на любом конце системы.

электролит : Неметаллическая жидкость или твердое вещество, проводящее ионы — электрически заряженные атомы или молекулы — для переноса электрических зарядов. (Некоторые минералы в крови или других телесных жидкостях могут служить ионами, которые перемещаются, чтобы нести заряд.) Электролиты также могут служить ионами, которые перемещают положительные заряды внутри батареи или конденсатора.

электрон : Отрицательно заряженная частица, обычно вращающаяся вокруг внешних областей атома; также носитель электричества внутри твердых тел.

инженер : Человек, который использует науку для решения проблем. Глагол «спроектировать» означает разработать устройство, материал или процесс, который решит какую-то проблему или неудовлетворенную потребность. (v.) Для выполнения этих задач или имя лица, которое выполняет такие задачи.

сила : Некоторое внешнее воздействие, которое может изменить движение тела, удерживать тела близко друг к другу или вызывать движение или напряжение в неподвижном теле.

графит : Подобно алмазу, графит (вещество, содержащееся в грифеле карандаша) представляет собой форму чистого углерода. В отличие от алмаза, графит очень мягкий. Основное различие между этими двумя формами углерода заключается в количестве и типе химических связей между атомами углерода в каждом веществе.

водород : Самый легкий элемент во Вселенной. В виде газа он бесцветен, не имеет запаха и легко воспламеняется. Это неотъемлемая часть многих видов топлива, жиров и химических веществ, из которых состоят живые ткани. Он состоит из одного протона (который служит его ядром), вокруг которого вращается один электрон.

металл : Что-то, что хорошо проводит электричество, имеет тенденцию быть блестящим (отражающим) и податливым (это означает, что ему можно придать форму с помощью тепла и без слишком большого усилия или давления).

окисление : (прил. окислительный) Процесс, при котором одна молекула отбирает электрон у другой. Говорят, что жертва этой реакции «окислилась», а окислитель (вор) «восстановился». Окисленная молекула снова становится целой, отнимая электрон у другой молекулы. Окислительные реакции с молекулами в живых клетках настолько бурны, что могут вызвать гибель клеток. В окислении часто участвуют атомы кислорода, но не всегда.


Learn more