+7(499) 136 06 90

+7(495) 704-31-86

[email protected]

Электрическая дуга что это


что это такое, причины возникновения, свойства

Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.

Рис. 1. Грозовой разряд

На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.

Что такое электрическая дуга?

Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.

Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.

Рис. 2. Электрическая дуга

Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».

Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.

Рис. 3. Физика электрической дуги

Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.

Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.

При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.

При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.

На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.

Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.

Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.

Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.

Электрическая дуга отличается от обычного разряда большей длительностью горения.

Строение

Электрическая дуга состоит из трёх основных зон:

  • катодной;
  • анодной;
  • плазменного столба.

В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.

На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.

Рис. 4. Строение сварочной дуги

Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.

Свойства

Высокая плотность тока в стволе электрической дуги определяет её главные свойства:

  1. Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
  2. Длительное горение, при поддержании условий образования ионов.

Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.

Полезное применение

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)

Рис. 5. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Рис. 6. Дуговой разряд на ЛЭП

Причины возникновения

Исходя из определения, можем назвать условия возникновения электрической дуги:

  • наличие разнополярных электродов с большими токами;
  • создание искрового разряда;
  • поддержание напряжения на электродах;
  • обеспечение условий для сохранения температуры ствола.

Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.

При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.

Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.

Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.

Способы гашения

Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.

С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.

Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.

Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.

Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.

Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.

Воздействие на человека и электрооборудование

Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.

Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.

Видео по теме

https://www.youtube.com/watch?v=wuIIgOvi-EI

Электрическая дуга, способы сварки и сварные соединения

Природа сварочной дуги

Электрическая дуга представляет собой один из видов электрических разрядов в газах, при котором наблюдается прохождение электрического тока через газовый промежуток под воздействием электрического поля. Электрическую дугу, используемую для сварки металлов, называют сварочной дугой. Дуга является частью электрической сварочной цепи, и на ней происходит падение напряжения. При сварке на постоянном токе электрод, подсоединенный к положительному полюсу источника питания дуги, называют анодом, а к отрицательному - катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Промежуток между электродами называют областью дугового разряда или дуговым промежутком. Длину дугового промежутка называют длиной дуги. В обычных условиях при низких температурах газы состоят из нейтральных атомов и молекул и не обладают электрической проводимостью. Прохождение электрического тока через газ возможно только при наличии в нем заряженных частиц - электронов и ионов. Процесс образования заряженных частиц газа называют ионизацией, а сам газ - ионизованным. Возникновение заряженных частиц в дуговом промежутке обусловливается эмиссией (испусканием) электронов с поверхности отрицательного электрода (катода) и ионизацией находящихся в промежутке газов и паров. Дуга, горящая между электродом и объектом сварки, является дугой прямого действия. Такую дугу принято называть свободной дугой в отличие от сжатой, поперечное сечение которой принудительно уменьшено за счет сопла горелки, потока газа, электромагнитного поля. Возбуждение дуги происходит следующим образом. При коротком замыкании электрода и детали в местах касания их поверхности разогреваются. При размыкании электродов с нагретой поверхности катода происходит испускание электронов - электронная эмиссия. Выход электронов в первую очередь связывают с термическим эффектом (термоэлектронная эмиссия) и наличием у катода электрического поля высокой напряженности (автоэлектронная эмиссия). Наличие электронной эмиссии с поверхности катода является непременным условием существования дугового разряда.

По длине дугового промежутка дуга разделяется на три области (рис. 1): катодную, анодную и находящийся между ними столб дуги. Катодная область включает в себя нагретую поверхность катода, называемую катодным пятном, и часть дугового промежутка, примыкающую к ней.

 

Протяженность катодной области мала, но она характеризуется повышенной напряженностью и протекающими в ней процессами получения электронов, являющимися необходимым условием для существования дугового разряда. Температура катодного пятна для стальных электродов достигает 2400 - 2700°С. На нем выделяется до 38% общей теплоты дуги. Основным физическим процессом в этой области является электронная эмиссия и разгон электронов. Падение напряжения в катодной области UK составляет порядка 12 - 17 В.

Анодная область состоит из анодного пятна на поверхности анода и части дугового промежутка, примыкающего к нему. Ток в анодной области определяется потоком электронов, идущих из столба дуги. Анодное пятно является местом входа и нейтрализации свободных электронов в материале анода. Оно имеет примерно такую же температуру, как и катодное пятно, но в результате бомбардировки электронами на нем выделяется больше теплоты, чем на катоде. Анодная область также характеризуется повышенной напряженностью. Падение напряжения в ней Uк составляет порядка 2 - 11 В. Протяженность этой области также мала.

Столб дуги занимает наибольшую протяженность дугового промежутка, расположенную между катодной и анодной областями. Основным процессом образования заряженных частиц здесь является ионизация газа. Этот процесс происходит в результате соударения заряженных (в первую очередь электронов) и нейтральных частиц газа. При достаточной энергии соударения из частиц газа происходит выбивание электронов и образование положительных ионов. Такую ионизацию называют ионизацией соударением. Соударение может произойти и без ионизации, тогда энергия соударения выделяется в виде теплоты и идет на повышение температуры дугового столба. Образующиеся в столбе дуги заряженные частицы движутся к электродам: электроны - к аноду, ионы - к катоду. Часть положительных ионов достигает катодного пятна, другая же часть не достигает и, присоединяя к себе отрицательно заряженные электроны, становятся нейтральными атомами. Такой процесс нейтрализации частиц называют рекомбинацией. В столбе дуги при всех условиях горения ее наблюдается устойчивое равновесие между процессами ионизации и рекомбинации. В целом столб дуги не имеет заряда. Он нейтрален, так как в каждом сечении его одновременно находятся равные количества противоположно заряженных частиц. Температура столба дуги достигает 6000 - 8000°С и более. Падение напряжения в нем Uc изменяется практически линейно по длине, увеличиваясь с увеличением длины столба. Падение напряжения зависит от состава газовой среды и уменьшается с введением в нее легко ионизующихся компонентов. Такими компонентами являются щелочные и щелочно-земельные элементы (Са, Na, К и др.). Общее падение напряжения в дуге Uд = Uк + Uа + Uс. Принимая падение напряжения в столбе дуги в виде линейной зависимости, его можно представить формулой Uс = Еlс, где Е - напряженность по длине, lс - длина столба. Значения Uк, Uа, Е практически зависят лишь от материала электродов и состава среды дугового промежутка и при их неизменности остаются постоянными при разных условиях сварки. В связи с малой протяженностью катодной и анодной областей можно считать практически lс = lд. Тогда получается выражение Uд = a + blд показывающее, что напряжение дуги прямым образом зависит от ее длины, где а = Uк + Uа; b = Е.

Непременным условием получения качественного сварного соединения является устойчивое горение дуги (ее стабильность). Под этим понимают такой режим ее существования, при котором дуга длительное время горит при заданных значениях силы тока и напряжения, не прерываясь и не переходя в другие виды разрядов. При устойчивом горении сварочной дуги основные ее параметры- сила тока и напряжение- находятся в определенной взаимозависимости. Поэтому одной из основных характеристик дугового разряда является зависимость ее напряжения от силы тока при постоянной длине дуги. Графическое изображение этой зависимости при работе в статическом режиме (в состоянии устойчивого горения дуги)называют статической вольтамперной характеристики дуги (рис. 2).

С увеличением длины дуги ее напряжение возрастает и кривая статической вольтамперной характеристики поднимается выше, с уменьшением длины дуги опускается ниже, качественно сохраняя при этом свою форму. Кривую статической характеристики можно разделить на три области: падающую, жесткую и возрастающую. В первой области увеличение тока приводит к резкому падению напряжения дуги.

Это обусловлено тем, что с увеличением силы тока увеличиваются площадь сечения столба дуги и его электропроводность. Горение дуги на режимах в этой области отличается малой устойчивостью. Во второй области увеличение силы тока не связано с изменением напряжения дуга. Это объясняется тем, что площадь сечения столба дуги и активных пятен изменяется пропорционально силе тока, в связи с чем плотность тока и падение напряжения в дуге сохраняются постоянными.

 

 

Сварка дугой с жесткой статической характеристикой находит широкое применение в сварочной технологии, особенно при ручной сварке. В третьей области с увеличением силы тока напряжение возрастает. Это связано с тем, что диаметр катодного пятна становится равным диаметру электрода и увеличиваться далее не может, при этом в дуге возрастает плотность тока и падает напряжение. Дуга с возрастающей статической характеристикой широко используется при автоматической и механизированной сварке под флюсом и в защитных газах с применением тонкой сварочной проволоки. При механизированной сварке плавящимся электродом иногда применяют статическую вольтамперную характеристику дуги, снятую не при постоянной ее длине, а при постоянной скорости подачи электродной проволоки (рис. 3).

 

Как видно из рисунка, каждой скорости подачи электродной проволоки соответствует узкий диапазон токов с устойчивым горением дуга. Слишком малый сварочный ток может привести к короткому замыканию электрода с изделием, а слишком большой- к резкому возрастанию напряжения и ее обрыву.

 

Особенности дуги на переменном токе

При сварке на постоянном токе в установившемся режиме все процессы в дуге протекают с определенной скоростью и горение дуги отличается высокой стабильностью.

При питании дуга переменным током полярность электрода и изделия, а также условия существования дугового разряда периодически изменяются. Так, дуга переменного тока промышленной частоты 50 Гц погасает и вновь возбуждается 100 раз в секунду, или дважды за каждый период. Поэтому особо возникает вопрос об устойчивости горения дуги переменного тока. В первую очередь устойчивость горения такой дуги зависит от того, насколько легко происходит повторное возбуждение дуги в каждом полупериоде. Это определяется ходом физических и электрических процессов в дуговом промежутке и на электродах в отрезки времени между каждым погасанием и новым зажиганием дуги. Снижение тока сопровождается соответствующим уменьшением температуры в столбе дуги и степени ионизации дугового промежутка. При переходе тока через нуль и перемене полярности в начале и конце каждого полупериода дуга гаснет. Одновременно падает и температура активных пятен на аноде и катоде. Падение температуры несколько отстает по фазе при переходе тока через нуль, что связано с тепловой инерционностью процесса. Особенно интенсивно падает температура активного пятна, расположенного на поверхности сварочной ванны, в связи с интенсивным отводом теплоты в массу детали. В следующий за погасанием дуги момент меняется полярность напряжения на дуговом промежутке (рис. 4).

 

Одновременно изменяется и направление движения заряженных частиц в дуговом промежутке. В условиях пониженной температуры активных пятен и степени ионизации в дуговом промежутке повторное зажигание дуги в начале каждого полупериода происходит только при повышенном напряжении между электродами, именуемым пиком зажигания или напряжением повторного зажигания дуги. Пик зажигания всегда выше напряжения дуги, соответствующего стабильному режиму ее горения. При этом величина пика зажигания несколько выше в тех случаях, когда катодное пятно находится на основном металле. Величина пика зажигания существенно влияет на устойчивость горения дуги переменного тока. Деионизация и охлаждение дугового промежутка возрастают с увеличением длины дуги, что приводит к необходимости дополнительного повышения пика зажигания и влечет снижение устойчивости дуги. Поэтому затухание и обрыв дуги переменного тока при прочих равных условиях всегда происходят при меньшей ее длине, чем для постоянного тока. При наличии в дуговом промежутке паров легко-ионизующихся элементов пик зажигания уменьшается и устойчивость горения дуга переменного тока повышается.

С увеличением силы тока физические условия горения дуги улучшаются, что также приводит к снижению пика зажигания и повышению устойчивости дугового разряда. Таким образом, величина пика зажигания является важной характеристикой -дуги переменного тока и оказывает существенное влияние на ее устойчивость. Чем хуже условия для повторного возбуждения дуги, тем больше разница между пиком зажигания и напряжением дуги. Чем выше пик зажигания, тем выше должно быть напряжение холостого хода источника питания дуги током. При сварке на переменном токе неплавящимся электродом, когда материал его и изделия резко различаются по своим теплофизическим свойствам, проявляется выпрямляющее действие дуги. Это характеризуется протеканием в цепи переменного тока некоторой составляющей постоянного тока, сдвигающей в определенном направлении кривые напряжения и тока от горизонтальной оси (рис. 5). Наличие в сварочной цепи составляющей постоянного тока отрицательно сказывается на качестве сварного соединения и условиях процесса: уменьшается глубина проплавления, увеличивается напряжение дуги, значительно повышается температура электрода и увеличивается его расход. Поэтому приходится применять специальные меры для подавления действия постоянной составляющей.

 

При сварке плавящимся электродом, близким по составу к основному металлу, на режимах, обеспечивающих устойчивое горение дуги, выпрямляющее действие дуги незначительно и кривые тока и напряжения располагаются практически симметрично относительно оси абсцисс.

 

Технологические свойства дуги

Под технологическими свойствами сварочной дуги понимают совокупность ее теплового, механического и физико-химического воздействия на электроды, определяющие интенсивность плавления электрода, характер его переноса, проплавление основного металла, формирование и качество шва. К технологическим свойствам дуги относятся также ее пространственная устойчивость и эластичность. Технологические свойства дуги взаимосвязаны и определяются параметрами режима сварки.

Важными технологическими характеристиками дуги являются зажигание и стабильность горения дуги. Условия зажигания и горения дуги зависят от рода тока, полярности, химического состава электродов, межэлектродного промежутка и его длины. Для надежного обеспечения процесса зажигания дуй? необходимо подведение к электродам достаточного напряжения холостого хода источника питания дуги, но в то же время безопасного для работающего. Для сварочных источников напряжение холостого хода не превышает 80 В на переменном токе и 90 В на постоянном. Обычно напряжение зажигания дуги больше напряжения горения дуги на переменном токе в 1,2 - 2,5 раза, а на постоянном токе - в 1,2 - 1,4 раза. Дуга зажигается от нагрева электродов; возникающего при их соприкосновении. В момент отрыва электрода от изделия с нагретого катода происходит электронная эмиссия. Электронный ток ионизует газы и пары металла межэлектродного промежутка, и с этого момента в дуге появляются электронный и ионный токи. Время установления дугового разряда составляет 10-5 – 10-4 с. Поддержание непрерывного горения дуги будет осуществляться, если приток энергии в дугу компенсирует ее потери. Таким образом, условием для зажигания и устойчивого горения дуги является наличие специального источника питания электрическим током.

Вторым условием является наличие ионизации в дуговом промежутке. Степень протекания этого процесса зависит от химического состава электродов и газовой среды в дуговом промежутке. Степень ионизации выше при наличии в дуговом промежутке легкоионизующихся элементов. Горящая дуга может быть растянута до определенной длины, после чего она гаснет. Чем выше степень ионизации в дуговом промежутке, тем длиннее может быть дуга. Максимальная длина горящей без обрыва дуги характеризует важнейшее технологическое свойство ее - стабильность. Стабильность дуги зависит от целого ряда факторов: температуры катода, его эмиссионной способности, степени ионизации среды, длины дуги и др.

К технологическим характеристикам дуги относятся также пространственная устойчивость и эластичность. Под этим понимают способность сохранения дугой неизменности пространственного положения относительно электродов в режиме устойчивого горения и возможность отклонения и перемещения без затухания под воздействием внешних факторов. Такими факторами могут быть магнитные поля и ферромагнитные массы, с которыми дуга может взаимодействовать. При этом взаимодействии наблюдается отклонение дуги от естественного положения в пространстве. Отклонение столба дуги под действием магнитного поля, наблюдаемое в основном при сварке постоянным током, называют магнитным дутьем (рис. 6).

 

 

Возникновение его объясняется тем, что в местах изменения направления тока создаются напряженности магнитного поля. Дуга является своеобразной газовой вставкой между электродами и как любой проводник взаимодействует с магнитными полями. При этом столб сварочной дуги можно рассматривать в качестве гибкого проводника, который под воздействием магнитного поля может перемещаться, как любой проводник, деформироваться и удлиняться. Это приводит к отклонению дуги в сторону, противоположную большей напряженности. При сварке переменным током в связи с тем, что полярность меняется с частотой тока, это явление проявляется значительно слабее. Отклонение дуги также имеет место при сварке вблизи ферромагнитных масс (железо, сталь). Это объясняется тем, что магнитные силовые линии проходят через ферромагнитные массы, обладающие хорошей магнитной проницаемостью, значительно легче, чем через воздух. Дуга в этом случае отклонится в сторону таких масс.

Возникновение магнитного дутья вызывает непровары и ухудшение формирования швов. Устранить его можно за счет изменения места токоподвода к изделию или угла наклона электрода, временным размещением балластных ферромагнитных масс у сварного соединения, позволяющих выравнивать несимметричность магнитных полей, а также заменой постоянного тока переменным.

 

Понятие о сварке и ее сущность

Сложные конструкции, как правило, получают в результате объединения между собой отдельных элементов (деталей, агрегатов, узлов). Такие объединения могут выполняться с помощью разъемных или неразъемных соединений.

В соответствии с ГОСТ 2601-74 сварка определяется как процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве или пластическом деформировании или совместным действием того и другого.

Неразъемные соединения, выполненные с помощью сварки, называют сварными соединениями. Чаще всего с помощью сварки соединяют детали из металлов. Однако сварные соединения применяют и для деталей из неметаллов - пластмасс, керамик или их сочетаний.

Для получения сварных соединений не требуется применения каких-либо специальных соединительных элементов (заклепок, накладок и т. п.). Образование неразъемного соединения в них обеспечивается за счет проявления действия внутренних сил системы. При этом происходит образование связей между атомами металла соединяемых деталей. Для сварных соединений характерно возникновение металлической связи, обусловленной взаимодействием ионов и обобществленных электронов.

Для получения сварного соединения совершенно недостаточно простого соприкосновения поверхностей соединяемых деталей. Межатомные связи могут установиться только тогда, когда соединяемые атомы получат некоторую дополнительную энергию, необходимую для преодоления существующего между ними определенного энергетического барьера. При этом атомы достигают состояния равновесия в. действии сил напряжения и отталкивания. Эту энергию называют энергией активации. При сварке ее вводят извне путем нагрева (термическая активация) или пластического деформирования (механическая активация).

Сближение свариваемых частей и приложение энергии активации - необходимые условия для образования неразъемных сварных соединений.

В зависимости от вида активации при выполнении соединений различают два вида сварки: плавлением и давлением. При сварке плавлением детали по соединяемым кромкам оплавляют под действием источника нагрева. Оплавленные поверхности кромок покрываются расплавленным металлом, который, сливаясь в общий объем, образует жидкую сварочную ванну. При охлаждении сварочной ванны жидкий металл затвердевает и образует сварной шов. Шов может быть образован или только за счет расплавления металла свариваемых кромок, или за счет их и дополнительного введения в сварочную ванну расплавляемой присадки.

Сущность сварки давлением состоит в непрерывном или прерывистом совместном пластическом деформировании материала по кромкам свариваемых деталей. Благодаря пластической деформации и течению металла облегчается установление межатомных связей соединяемых частей. Для ускорения процесса применяют сварку давлением с нагревом. В некоторых способах сварки давлением нагрев может производиться до оплавления металла свариваемых поверхностей.

 

Классификация видов сварки

В настоящее время различают более 150 видов сварочных процессов. ГОСТ 19521-74 устанавливает классификацию сварочных процессов по основным физическим, техническим и технологическим признакам.

Основой физических признаков классификации является форма энергии, используемой для получения сварного соединения. По физическим признакам все виды сварки относят к одному из трех классов: термическому, термомеханическому и механическому.

К термическому классу относят все виды сварки плавлением, осуществляемые с использованием тепловой энергии, - газовую, дуговую, электрошлаковую, электронно-лучевую, лазерную и др.

К термомеханическому классу относят все виды сварки, осуществляемые с использованием тепловой энергии и давления,— контактную, диффузионную, газо- и дугопрессовую, кузнечную и др.

К механическому классу относят все виды сварки давлением, осуществляемые с использованием механической энергии, - холодная, трением, ультразвуковая, взрывом и др.

К техническим признакам классификации сварочных процессов относят способы защиты металла в зоне сварки, непрерывность процесса и степень его механизации (рис. 7).

Технологические признаки классификации устанавливаются для каждого вида сварки отдельно. Например, вид дуговой сварки может быть классифицирован по следующим признакам: виду электрода, характеру защиты, уровню автоматизации и т. п.

 

Основные разновидности дуговой сварки

Источником нагрева при дуговых способах сварки является сварочная дуга, представляющая собой устойчивый электрический разряд, происходящий в газовой среде между двумя электродами или электродом и деталью. Для поддержания такого разряда нужной продолжительности необходимо применение специальных источников питания дуги (ИПД). Для питания дуги переменным током применяют сварочные трансформаторы, при постоянном токе- сварочные генераторы или сварочные выпрямители. На рис. 8 показана схема электрической цепи дуговой сварки.

 

 

Разработка дуговой сварки обусловлена открытием электрической дуги в 1802 г. русским физиком В.В. Петровым. Впервые для соединения металлических частей с помощью электрической дуги, горящей между неплавящимся угольным электродом и свариваемым изделием, было осуществлено Н. Н. Бенардосом в 1882 г. При необходимости в сварочную ванну дополнительно подавался присадочный материал. В 1888 г. русский инженер Н.Г. Славянов усовершенствовал процесс, заменив неплавящийся угольный электрод на плавящийся металлический. Тем самым было достигнуто объединение функций электрода для существования дугового разряда и присадочного металла для образования ванны. Предложенные Н.Н. Бенардосом и Н.Г. Славяновым способы дуговой сварки неплавящимся и плавящимся электродами легли в основу разработки наиболее распространенных современных способов дуговой сварки.

Дальнейшее совершенствование дуговой сварки шло по двум направлениям: 1) изыскание средств защиты и обработки расплавленного металла сварочной ванны; 2) автоматизация процесса. По характеру защиты свариваемого металла и сварочной ванны от окружающей среды могут быть выделены способы дуговой сварки с шлаковой, газошлаковой и газовой защитой. По степени автоматизации процесса способы разделяют на ручную, механизированную и автоматическую сварку. Ниже приводятся характеристики и описание основных разновидностей дуговой сварки.

Дуговая сварка покрытыми электродами (рис. 9). При этом способе процесс выполняется вручную. Сварочные электроды могут быть плавящиеся - стальные, медные, алюминиевые и др. - и неплавящиеся - угольные, графитовые, вольфрамовые.

 

 

Наиболее широко применяют сварку стальными электродами, имеющими на поверхности электродное покрытие. Покрытие электродов готовится из порошкообразной смеси различных компонентов и наносится на поверхность стального стержня в виде затвердевающей пасты. Его назначение - повысить устойчивость горения дуги, провести металлургическую обработку сварочной ванны, и улучшить качество сварки. Сварной шов образуют за счет расплавления металла свариваемых кромок и плавления стержня сварочного электрода. При этом сварщик вручную осуществляет два основных технологических движения: подачу покрытого электрода в зону сварки по мере его расплавления и перемещение дуги вдоль свариваемого шва. Ручная дуговая сварка покрытыми электродами — один из наиболее распространенных способов, используемых при изготовлении сварных конструкций. Она отличается простотой и универсальностью, возможностью выполнения соединений в различных пространственных положениях и труднодоступных местах. Существенный недостаток ее - малая производительность процесса и зависимость качества сварки от квалификации сварщика.

Дуговая сварка под флюсом (рис. 10). Электрическая дуга горит между плавящимся электродом и деталью под слоем сварочного флюса, полностью закрывающего дугу и сварочную ванну от взаимодействия с воздухом. Сварочный электрод выполнен в виде проволоки, свернутой в кассету и автоматически подаваемой в зону сварки. Перемещение дуги вдоль свариваемых кромок может выполняться или вручную, или с помощью специального привода. В первом случае процесс ведется с помощью сварочных полуавтоматов, во втором - сварочных автоматов. Дуговая сварка под флюсом отличается высокой производительностью и качеством получаемых соединений. К недостаткам процесса следует отнести трудность сварки деталей небольших толщин, коротких швов и выполнение швов в основных положениях, отличных от нижних. Подробную информацию о дуговой сварке под флюсом читайте в

 

 

Дуговая сварка в защитных газах (рис. 11). Электрическая дуга горит в среде специально подаваемых в зону сварки защитных газов. При этом можно использовать как неплавящийся, так и плавящийся электроды, а выполнять процесс ручным, механизированным или автоматическим способом. При сварке неплавящимся электродом применяют присадочную проволоку, при плавящемся электроде присадки не требуется. Сварка в защитных газах отличается широким разнообразием и применяется для широкого круга металлов и сплавов.

 

Электрошлаковая сварка (рис. 12). Процесс сварки является бездуговым. В отличие от дуговой сварки для расплавления основного и присадочного металлов используется теплота, выделяющаяся при прохождении сварочного тока через расплавленный электропроводный шлак (флюс). После затвердевания расплава образуется сварной шов. Сварку выполняют чаще всего при вертикальном положении свариваемых деталей с зазором между ними. Для формирования шва по обе стороны зазора устанавливают медные ползуны-кристаллизаторы, охлаждаемые водой. Электрошлаковую сварку применяют для соединения деталей больших толщин (от 20 до 1000 мм и более).

Сварные соединения и швы

Согласно ГОСТ 2601-84 устанавливается ряд терминов и определений связанных со сварными соединениями и швами.

Сварное соединение - это неразъемное соединение нескольких деталей, выполненное сваркой. Конструктивный тип сварного соединения определяется взаиморасположением свариваемых частей. При сварке плавлением различают следующие типы сварных соединений: стыковое, угловое, тавровое, нахлесточное и торцовое. Применяется также соединение нахлесточное с точечным сварным швом, выполненное дуговой сваркой.

Металлическую конструкцию, изготовленную сваркой из отдельных деталей, называют сварной конструкцией. Часть такой конструкции называют сварным узлом.

Стыковое соединение представляет собой сварное соединение двух деталей, расположенных в одной плоскости и примыкающих друг к другу торцовыми поверхностями (рис. 13, а). Оно наиболее распространено в сварных конструкциях, поскольку имеет ряд преимуществ перед другими видами соединений. Условные обозначения стыковых соединений: С1 - С48.

Угловое соединение представляет собой сварное соединение двух элементов, расположенных под углом друг к другу и сваренных в месте приложения их кромок (рис.13, б). Условные обозначения угловых соединений: У1 - У10.

Тавровое соединение - это соединение, в котором к боковой поверхности одного элемента примыкает под углом и приварен торцом другой элемент. Как правило, угол между элементами прямой (рис. 13, в). Условные обозначения тавровых соединений: Т1 - Т8.

Нахлесточное соединение представляет собой сварное соединение, в котором соединяемые элементы расположены параллельно и частично перекрывают друг друга (рис. 13, г). Условные обозначения: h2 - Н9.

 

Торцовое соединение - это соединение, в котором боковые поверхности элементов примыкают друг к другу (рис. 13, д). Условных обозначений в стандарте пока нет.

Сварной шов представляет собой участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла сварочной ванны.

Сварочная ванна - это часть металла сварного шва, находящаяся в момент сварки в расплавленном состоянии. Углубление, образующееся в сварочной ванне под действием дуги, называют кратером. Металл соединяемых частей, подвергающихся сварке, называют основным металлом. Металл, предназначенный для введения в сварочную ванну в дополнение к расплавленному основному, называют присадочным металлом. Переплавленный присадочный металл, введенный в сварочную ванну или наплавленный на основной металл, называют наплавленным металлом. Сплав, образованный переплавленным основным или переплавленным основным и наплавленным металлами, называют металлом шва. В зависимости от параметров и формы подготовки свариваемых кромок деталей доли участия основного и наплавленного металлов в формировании шва могут существенно изменяться (рис. 14):

 

В зависимости от доли участия основного и присадочного металлов в формировании шва его состав может изменяться. Торцовые поверхности деталей, подлежащие нагреву и расплавлению при сварке, называют свариваемыми кромками. Для обеспечения равномерного проплавления свариваемых кромок в зависимости от толщины основного металла и способа сварки им придают наиболее оптимальную форму, выполняя предварительно подготовку кромок. На рис. 15 приведены применяемые формы подготовки кромок для различных типов сварных соединений. Основными параметрами формы подготовленных кромок и собранных под сварку соединений являются е, R, b, a, с - высота отбортовки, радиус закруглений, зазор, угол скоса, притупление кромок.

 

Отбортовку кромок применяют при сварке тонкостенных деталей. Для толстостенных деталей применяют разделку кромок за счет их скоса, т.е. выполнение прямолинейного или криволинейного наклонного скоса кромки, подлежащей сварке. Нескошенная часть кромки с носит название притупления кромки, а расстояние b между кромками при сборке - зазором. Острый угол b между плоскостью скоса кромки и плоскостью торца называют углом скоса кромки, угол a между скошенными кромками - углом разделки кромок.

Значения параметров формы подготовки кромок и их сборки регламентируются ГОСТ 5264-80. В зависимости от типов сварных соединений различают стыковые и угловые сварные швы. Первый вид швов используется при получении стыковых сварных соединений. Второй вид швов используется в угловых, тавровых и нахлесточных соединениях.

Что такое электрическая дуга? Эксперт-электрик объясняет опасности

Как электрик с более чем двадцатилетним стажем, мне часто задают один вопрос; что такое электрическая дуга ?

Проще говоря, электрическая дуга возникает, когда электричество перескакивает с одного соединения на другое. Время от времени вы слышите, как электрические выключатели издают шипящий/треск.

Обычно это происходит при их включении или выключении. Это известно как искрение и может быть результатом двух вещей.

Это может быть вызвано поврежденным кабелем, вызывающим хлопки, или дуговым разрядом. Если причина в поврежденном проводе, проводка не выдерживает протекающего тока, из-за чего возникает искрение.

Вы когда-нибудь слышали о параллельном дуговом потоке?

Если у вас проблема с параллельным течением дуги, ток протекает через поврежденную изоляцию, что приводит к короткому замыканию. Короткое замыкание не очень мощное, поэтому автоматический выключатель не может его идентифицировать. В этой статье есть все, что вам нужно знать об электрической дуге.

Начнем!

Что вызывает электрическую дугу?

Электрическая дуга Возникновение дуги может быть результатом нескольких проблем в вашей электрической системе, таких как:

1. Перегрузка

Возникновение дуги в электрическом щите после перегрузки цепей в щите. Если автоматический выключатель подключается к шине электрического щита, это может привести к перегреву. Это может привести к выходу из строя шины и соединения, что сделает оборудование неисправным и подверженным отказам. При протекании избыточного тока автоматические выключатели могут работать не так, как ожидалось. Вместо того, чтобы отключаться при протекании избыточного тока, поврежденные цепи позволяют электричеству продолжать течь, что приводит к перегреву с последующим искрением.

2. Окружающие условия

Условия, окружающие электрическую панель, могут быть одной из причин возникновения дуги, а также могут влиять на серьезность ситуации.

Проводка в электрической панели никогда не должна оставаться оголенной за пределами коробки. Легковоспламеняющиеся материалы, такие как растворитель для краски или бензин, не должны находиться рядом с электрическим щитом или в непосредственной близости от него.

Кроме того, использование избыточных предохранителей внутри электрической коробки может привести к дополнительному току электричества через электрические цепи, вызывая перегрев и искрение. Цепи, которые отключаются, или предохранители, которые часто перегорают, могут указывать на потенциальный риск дугового разряда.

3. Поврежденные электрические панели

Исследования подтверждают, что электрические панели, разработанные по крайней мере двумя производителями, в ходе полевых испытаний выявили дефекты конструкции, которые могут вызвать искрение, а иногда и возгорание. JL Home Inspection утверждает, что электрические панели Zinsco имеют неисправные звенья автоматического выключателя, в результате чего блоки вырывают боковые кожухи панели после взрывов или пропускают электрический ток даже в выключенном состоянии.

Другим производителем, который, как утверждается, производит неисправные электрические панели, является Federal Pacific Stab-Lok. Их электрические панели довольно печально известны неисправными автоматическими выключателями, которые могут не сработать, когда это необходимо. Эти отказы рассматриваются как основные опасности, и они не несут прямой ответственности за искрение, хотя и играют в нем определенную роль. Большинство дефектных панелей было произведено в 1970-х годах или ранее.

Каковы признаки искрения?

Дуговой разряд — это тип электрического разряда, который возникает, когда электроны протекают между двумя проводниками, обычно металлическими, в среде с газом или вакуумом.

Проводниками могут быть провода, стержни или другие объекты, способные проводить электрический ток.

Когда разность электрических потенциалов между двумя проводниками достаточно высока, электроны будут перетекать из одного проводника в другой, вызывая искру или дугу.

Это может происходить как в газовой, так и в вакуумной среде.

Ниже приведены 6 признаков искрения:

  1. Яркий свет или вспышка, сопровождающая разряд
  2. Сильный шум при разряде
  3. Искры летят из точки разряда
  4. Запах гари из области выброса
  5. Область вокруг разряда нагревается
  6. Электрическое оборудование в этом районе перестает работать должным образом

Если вы заметили какой-либо из этих признаков, важно обратиться к квалифицированному электрику, чтобы он приехал и проверил ваш дом или офис на наличие потенциальной опасности поражения электрическим током.

Дугообразование может быть опасным и может привести к возгоранию или повреждению электрооборудования.

Квалифицированный электрик сможет определить источник дугового разряда и произвести необходимый ремонт.

Опасно ли искрение?

Да!

Электрическая дуга вызывает вспышку дуги.

Это может привести к таким травмам, как ожоги третьей степени, остановка сердца, потеря слуха, слепота, повреждение нервов и даже смерть.

Серьезные ожоги могут возникнуть, если пострадавший находится в пределах нескольких футов от дуги. Были проведены постановочные испытания, которые показали температуру более 2250 градусов по Цельсию на руках и шее человека, стоящего рядом с дуговым взрывом.

Дуги разбрасывают капли расплавленного металла с высокой скоростью. Этот расплавленный металл может быть выброшен на расстояние до 10 футов. Взрывная шрапнель способна проникнуть в ваше тело. Волны давления от взрыва могут отбросить вас через комнату или сбить с лестницы. Даже ваша одежда может загореться. Одетые части тела могут быть обожжены сильнее, чем открытые части тела.

Как предотвратить электрическую дугу?

При надлежащем обучении, оборудовании и мерах безопасности можно снизить риск возникновения электрической дуги. Вот меры предосторожности;

1. Обесточить оборудование

Крайне важно устранить потенциальную опасность как можно скорее. Старайтесь не работать с электрическим оборудованием, находящимся под напряжением, и будьте особенно осторожны при его тестировании, чтобы убедиться, что оно достаточно обесточено или когда вы снова включаете его. Используйте технологию удаленного управления стеллажами для управления автоматическими выключателями, когда вы находитесь за пределами зоны вспышки дуги, вместо того, чтобы подвергать опасности свой персонал.

2. Используя технологию низкого риска, изучите опасность.

Соберите информацию о вашей системе распределения электроэнергии и освойте защитные устройства, а также проведите исследование короткого замыкания, чтобы узнать больше о классификации дуговых вспышек для электрооборудования. Это поможет вам снизить вероятность короткого замыкания и искрения. Более того, узнайте о таких технологиях, как дугогасительные предохранители и дистанционное стеллажное устройство, которые удобны для обеспечения безопасности имущества и персонала.

3. Перепланировка электрических систем и управления

Узнайте, какие СИЗ необходимы в зависимости от класса опасности вспышки, и убедитесь, что персонал и имущество хорошо оснащены. Перепланируйте свое снаряжение, чтобы добиться оптимального технического контроля, который поможет предотвратить и снизить риск. При необходимости измените настройки автоматических выключателей и систем распределения электроэнергии.

4. Повышение осведомленности о рисках

Помимо получения разрешения от регулирующих органов, таких как OSHA, обучение технике безопасности гарантирует, что ваш персонал осознает последствия неосторожности и постоянно соблюдает необходимые меры безопасности. Это поможет им в случае вспышки дуги и в знании того, как снизить риск.

5. Создайте программу безопасности

Определите риски, используйте соответствующие средства индивидуальной защиты и установите границы вспышки дуги для обеспечения безопасности в случае вспышки дуги. Убедитесь, что подходящие электрические правила и рабочие процедуры правильно задокументированы, распространены среди всего персонала и строго соблюдаются.

Электрическая дуга вызывает звук?

Электричество может перемещаться по воздуху, как молния, от оголенного кабеля к другой поверхности, производя хлопки или треск.

Что означает искра в электрических розетках?

Искрообразование в электрической розетке может указывать на короткое замыкание, устаревшее оборудование или воздействие воды. Иногда это нормально, но иногда показывает, что проблема с розеткой. Вот что вы должны знать об искрении в электрических розетках;

  • Нормальное искрообразование — при резком переключении питания на другое устройство произойдет быстрое потребление доступной мощности, что может вызвать короткое искрообразование. Когда электроны начинают свободно течь, искр не должно быть. Это распространено и похоже на статическое электричество.
  • Сгоревшая розетка — электрическая розетка со следами ожогов должна быть заменена, так как это может привести к новым проблемам с электрической розеткой.
  • Короткое замыкание в розетке. Если в розетке аккумулируется много тепла, это может привести к расплавлению изоляции вокруг проводов. Когда кабели оголены, высока вероятность возникновения электрического пожара. После установления соединения электроны могут переместиться не в ту часть и привести к серьезной искре. Это называется коротким замыканием и может привести к электрическому возгоранию.
  • Выходное отверстие, подверженное воздействию воды. Вода может легко привести к искрообразованию на выходе, а затем к короткому замыканию. Установка GCFI приведет к прекращению искрообразования, а не к возникновению электрического пожара.
  • Древние электрические розетки – Через некоторое время розетки обычно изнашиваются. Несколько лет спустя соединения начинают ослабевать, что увеличивает вероятность возникновения короткого замыкания и, в конечном итоге, возгорания. Старые и изношенные шнуры электроприборов также могут стать причиной искрения. Обязательно замените электрические розетки через несколько лет.
  • Неаккуратный ремонт электропроводки. Когда домовладелец решает отремонтировать розетку, он должен знать, что делает. Если они пытаются решить эту проблему кратчайшим путем, они часто создают более опасную ситуацию, которая может привести к пожару.

Если в розетке короткие и нечастые искры, то это может быть типичным и безопасным. Однако, если он искрит каждый раз, когда вы пытаетесь что-то подключить, у вас могут быть проблемы.

Когда следует звонить электрику по поводу электрической дуги?

Когда вы начинаете слышать жужжание, треск или другие шумы в вашей электрической системе, пришло время вызвать электрика. Такие вещи, как ослабленные кабели, перегруженные розетки или ослабленные соединения, могут быть причиной того, что вы слышите эти странные звуки. Большинство из этих обстоятельств приведут к тому, что в вашей электрической системе возникнет искрение или возникнут странные шумы, а также другие проблемы с электричеством, такие как розетки, розетки или устройства, которые перестанут работать.

Если вы проигнорируете эти предупреждения, через некоторое время это может привести к еще большему повреждению вашей электрической системы, а иногда и к пожару. Подводя итог, если вы слышите жужжание, немедленно вызовите электрика.

Заключительные мысли

Электричество полезно, и в то же время опасны и сложны электрические системы. Электрики знают, как работает электричество, как протекают электрические цепи, как они взаимодействуют друг с другом и как с ними безопасно обращаться. Если у вас возникли проблемы с электричеством, безопасно пригласить профессионала к вам домой и попросить его решить эту проблему. Многие проблемы с электричеством можно легко решить, если их обнаружить на ранней стадии.

Чтобы увидеть больше подобных статей, добавьте в закладки AC Electric!

Что такое электрическая дуга?

Электрическая дуга возникает, когда электрический ток проходит через разрыв в цепи или между двумя электродами (проводниками электричества). Возможно, вы знакомы с этим упражнением из классического научного эксперимента — «Лестницы Иакова». Однако искрение может вызвать вспышку дуги, когда электричество течет или разряжается по непреднамеренному пути. Эти вспышки воспламеняются от частиц в окружающей среде, которые могут быть чем угодно, от пыли до газа. Дуги могут превышать 10 000 ° F, и вероятным результатом этих вспышек дуги являются электрические возгорания.

Дуговые разряды в электрических панелях

Вспышки дуги могут произойти везде, где протекает электрический ток. Тридцать шесть процентов вспышек дуги происходят в электрических панелях и корпусах. Электрические панели содержат множество различных цепей, шин и соединений. Дугообразование обычно происходит, когда цепь перегружается и перегревается. Перегрев приводит к повреждению не только автоматического выключателя, но и его соединения с шиной. После повреждения автоматический выключатель может выйти из строя и продолжать пропускать электричество между его соединениями, а не отключаться. Автоматический выключатель предназначен для отключения или разрыва соединения цепи и не работает до тех пор, пока он не будет сброшен. Однако, если поврежденный автоматический выключатель продолжает пропускать электричество, возможно возникновение дуги.

Другие причины возникновения электрической дуги

Проводка в электрическом щите может быть повреждена, даже если она закрыта и защищена от потенциальной опасности. Возможные причины включают:

  • Проводка, которая оборвана или отсоединена во время текущего обслуживания или новых установок
  • Изоляция, покрывающая провод, повреждается и оголяется
  • Электрический шкаф оставлен открытым или поврежден, что делает его восприимчивым к элементам
  • Перегрев предохранителей, когда внутри электрической панели установлено слишком много предохранителей
  • Неисправное оборудование или компоненты

Как электрическая дуга вызывает пожар

В соответствии с Национальной ассоциацией противопожарной защиты — NFPA 921, раздел 14. 9.1, для возгорания от источника электричества должно произойти следующее:

  • Электрическая проводка, оборудование или компонент должны иметь был запитан от электропроводки здания, аварийной системы, батареи или какого-либо другого источника.
  • Тепло и температура, достаточная для воспламенения близкого горючего материала, должны быть произведены за счет электрической энергии в точке происхождения от источника электричества.

Как указано выше, вспышки дуги вызывают температуру, которая может превышать 10 000°F. Это тепло намного выше точки плавления изоляции провода, которая обычно составляет 194°F. Пожары дуги обычно начинаются с возгорания изоляции провода (пластикового покрытия), но также могут возникать из-за частиц пыли и других загрязняющих веществ в окружающей среде.

Предотвращение вспышки электрической дуги

Внутри электрического щита вместо стандартного автоматического выключателя можно установить дугогасительные прерыватели. AFCI предназначены для обнаружения широкого спектра дуговых электрических неисправностей. Они обнаруживают эти неисправности, используя передовые электронные технологии для контроля цепи на наличие «нормальных» и «опасных» условий искрения. Одним из недостатков AFCI является цена. AFCI обычно стоит 30-40 долларов каждый, в то время как обычный автоматический выключатель стоит 2-5 долларов каждый. Существует много споров о том, работают ли они на самом деле, потому что искрение все еще происходит при установке AFCI, хотя они значительно снижают риск.

Электрическая противопожарная защита

Хотя не все дуговые замыкания можно предотвратить, электрические панели можно защитить от возгорания внутри шкафа, вызванного вспышкой дуги. Автоматические системы пожаротушения могут быть установлены внутри электрощита и обеспечат круглосуточную бесперебойную противопожарную защиту. В системе используется находящаяся под давлением трубка обнаружения пожара, которая разрывается и выпускает чистый агент в шкаф при воздействии пламени.


Learn more