+7(499) 136 06 90

+7(495) 704-31-86

[email protected]

Пенопласт коэффициент теплопроводности


Теплопроводность пенопласта от 50 мм до 150 мм

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Размеры листов

Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.

А что же покупать?

На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.

Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.

Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:

  • Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
  • Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
  • Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
  • Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.

Марки пенопласта

Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.

  • ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
  • ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
  • ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3

Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.

от чего зависит, сравнение с минватой и Пеноплексом, цены

Одна из самых важных характеристик при выборе любого утеплителя – теплопроводность. Ее коэффициент показывает, сколько тепла проходит через материал (пенопласт, Penoplex, кирпич, минвату) за определенное время. Чем дольше длится процесс такого теплообмена, тем ниже будет его значение и, соответственно, тем больше тепла останется внутри помещения.

Оглавление:

  1. От чего зависит теплопроводность?
  2. Сравнение с Пеноплексом и минватой
  3. Цена пенополистирола

Что влияет на теплопередачу?

Существует несколько факторов, которые значительно влияют на ее величину:

  • наличие пор и их структура;
  • плотность, толщина;
  • влагопоглощаемость.

Благодаря наличию пор в материале, как, например, в пенопласте и Пеноплексе, они имеют низкую теплопередачу. Внутри гранул нет ничего, кроме воздуха, а он имеет самую малую величину коэффициента – 0,022 Вт/м·К. Закрытые и маленького размера поры также затрудняют передачу тепловой энергии, а если они открытые и соединены между собой, то появляется конвекция, из-за которой повышается теплопроводность.

Чем плотнее материал, тем быстрее он пропускает тепло, как, например, металл или графит. Для сравнения, плотность пенопласта составляет 18 кг/м3, а у сплошного силикатного кирпича – около 1800 кг/м3, следовательно, у первого теплопередача будет очень низкая, а у второго – весьма высокая. Ко всему этому немаловажное значение имеет способность утеплителя поглощать воду, так как при попадании влаги внутрь она вытесняет сухой воздух, тем самым повышая передачу тепловой энергии.

Таблица с величинами коэффициентов теплопроводности:

Наименование теплоизоляции Плотность, кг/м3 Теплопроводность, Вт/м·К
Минвата 200 0,08
125 0,07
Пенополистирол ПСБ-С 15 до 15 0,043
ПСБ-С 25 15,1-25 0,041
ПСБ-С 35 15,1-35 0,038
ПСБ-С 50 15,1-50 0,041
Пеноплекс 33-45 0,03-0,032
Пустотелый керамический кирпич 1200 0,52
Сплошной силикатный кирпич 1800 0,47
Стекловата 75-175 0,032-0,041

Значение величины теплопроводности гранул пенопласта в зависимости от толщины:

Толщина, мм Коэффициент теплопередачи, Вт/м·К
30 0,04
50 0,03-0,037
100 0,03-0,046
150 0,02

Сравнение с другими утеплителями

Пенопласт получается в результате вспенивания полистирола, благодаря чему появляются наполненные газом поры, а Пеноплекс – экструдированный пенополистирол, произведенный методом экструзии, поэтому его гранулы имеют меньший размер. К тому же из-за равномерного и упорядоченного расположения ячеек в экструзионном, он является более прочным утеплителем, что позволяет ему сильнее изгибаться и меньше продавливаться под нагрузкой. Оба материала имеют наивысшие степени пожароопасности, поэтому обязательно следует учитывать это во время монтажа.

Сравнительная таблица Пеноплекса и пенополистирола:

Пенопласт Пеноплекс
Плотность, кг/м3 18 25-32
Влагопоглощаемость, % 0,8-1,2 0,4
Паропроницаемость, мг/(м·ч·Па) 0,05 0,02
Теплопроводность, Вт/м·К 0,031-0,041 0,03

По величине теплопроводности пенопласт проигрывает Пеноплексу, и по другим показателям также. Но даже если утеплять дом обычным вспененным полистиролом, то теплопотери могут сократиться практически на 40%. Главное – провести все работы по монтажу согласно всем требования производителя, в том числе не допустить попадания влаги между стеной и теплоизоляцией и ограничить доступ для грызунов.

По всем свойствам пенопласт и в сравнении с минватой весьма различается:

Минвата
Плотность, кг/м3 10-300
Влагопоглощаемость, % более 1%
Паропроницаемость, мг/(м·ч·Па) 0,4-0,5
Теплопередача, Вт/м·К 0,045 (при 35 кг/м3) -0,7

По коэффициенту теплопередачи пенопласт имеет наилучшее значение, но по паропроницаемости показатель у минваты намного лучше, в итоге ее свободно можно использовать внутри жилых помещений, к тому же она огнеустойчива, в отличие от вспененного полистирола. Также благодаря производству из минерального сырья она не выделяет во время горения опасных веществ, и, разлагаясь, не загрязняет окружающую среду. Но минвата по сравнению со вспененным полистиролом имеет намного больший вес, поэтому для ее монтажа, особенно на стены, требуется крепкая конструкция.

Стоимость

Таблица цен, по которым можно купить пенопласт:

Наименование марки пенополистирола Размеры, мм (длина/ширина/толщина) Плотность, кг/м3 Стоимость за м2, рубли
Knauf Therm Compack 1000x600x50 10-15 150
Therm Wall Light 1000x1200x100 10-12 190
1000х1200х50 10-12 100
1000х1200х20 10-12 40
Therm Facade 1000x1200x100 15,1-17,2 390
Therm Wall 2000х1200х50 10-12 150
ПСБ-С 15 1000х1000х20 15 50
1000х1000х30 60
1000х1000х40 80
1000х1000х50 90
1000х1000х100 170
ПСБ-С 25 1000х1000х20 20 80
1000х1000х30 120
1000х1000х40 140
1000х1000х50 150
1000х1000х100 300
ПСБ-С 35 1000х1000х20 35 100
1000х1000х30 140
1000х1000х40 180
1000х1000х50 200
1000х1000х100 400

Выбирая утеплитель, следует помнить, что чем выше коэффициент теплопередачи, тем большее количество слоев придется монтировать. Так, например, базальтовая минвата толщиной в 100 мм имеет практически такую же проводимость тепла – 0,042 Вт/м·К, как у пенополистирола размером 50 мм – 0,046 Вт/м·К, а теплопроводность Пеноплекса с 50 мм и 100 мм – 0,03 Вт/м·К. Каждый из них имеет свои плюсы и минусы, так минеральную вату рекомендуется использовать там, где требуется повышенная паропроницаемость и устойчивость к большим температурам, стекловату следует применять для гаражей или любых других мест, где высока вероятность возгорания.

Пенопласт и экструдированный пенополистирол все же лучше располагать снаружи здания, а не внутри, так меньше шансов для образования конденсата между стеной и утеплителем.

Дата: 5 июля 2016

Теплопроводность пенополистирола

Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадрат материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Типичные значения теплопроводности для пенополистирола  находятся в пределах 0,030 и 0,040 Вт/м∙K .

Теплоизоляция в основном основана на очень низкой теплопроводности газов. Газы обладают плохими свойствами теплопроводности по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразной структуре). Воздух и другие газы обычно являются хорошими изоляторами. Но главная польза в отсутствии конвекции. Таким образом, многие изоляционные материалы (например, пенополистирол ) функционируют просто потому, что имеют много заполненные газом карманы, которые предотвращают широкомасштабную конвекцию .

Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей, что приводит к быстрому снижению коэффициента теплопередачи.

 

Ссылки:

Теплопередача:

  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики, термодинамики, теплопередачи и течения жидкости. DOE Fundamentals Handbook, Volume 2 of 3. May 2016.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Addison-Wesley, Reading, MA (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г. , ISBN: 978-0412985317
  5. WSC Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г.Р.Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в работу ядерного реактора, 1988.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. К. О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

Изоляционные материалы

Пенополистирол - EPS - Теплоизоляция

Как правило, полистирол представляет собой синтетический ароматический полимер, изготовленный из мономера стирола, полученного из бензола и этилена, нефтепродуктов. Полистирол может быть твердым или вспененным. Полистирол представляет собой бесцветный прозрачный термопласт, который обычно используется для изготовления изоляции из пенопласта или картона, а также типа насыпной изоляции, состоящей из небольших шариков полистирола. Пенополистирол на 95-98% состоит из воздуха. Пенополистирол  является хорошими теплоизоляторами и часто используется в качестве строительных изоляционных материалов, таких как изоляционные бетонные формы и конструкционные теплоизоляционные панельные строительные системы. Расширенный (EPS) и 9Экструдированный полистирол 0003 (XPS) изготовлен из полистирола. Тем не менее, EPS состоит из маленьких пластиковых шариков, сплавленных между собой, а XPS начинается с расплавленного материала, выдавливаемого из формы в листы. XPS чаще всего используется в качестве пенопластовой изоляции.

Пенополистирол (EPS) представляет собой жесткий и прочный пенопласт с закрытыми порами. На строительство и строительство приходится около двух третей спроса на пенополистирол, и он используется для изоляции (полости) стен, крыш и бетонных полов. Благодаря своим техническим характеристикам, таким как малый вес, жесткость и формуемость, 9Пенополистирол 0003 может использоваться в самых разных областях, например, для подносов, тарелок и ящиков для рыбы.

Хотя как вспененный, так и экструдированный полистирол имеют структуру с закрытыми порами, они проницаемы для молекул воды и не могут считаться пароизоляцией. Между вспененными гранулами с закрытыми порами в пенополистироле имеются промежуточные зазоры, которые образуют открытую сеть каналов между склеенными гранулами. Если вода замерзнет и превратится в лед, она расширится и может привести к отрыву гранул полистирола от пенопласта.

 

Классификация изоляционных материалов

Для изоляционных материалов можно определить три общие категории. Эти категории основаны на химическом составе основного материала, из которого производится изоляционный материал.

Далее дается краткое описание этих типов изоляционных материалов.

Неорганические изоляционные материалы

Как видно из рисунка, неорганические материалы можно классифицировать соответственно:

  • Фиброзные материалы
    • Стеклянная шерсть
    • Скальная шерсть
  • Клеточные материалы
    • Расчет Силикат
    • Клеточное стекло
  • . из нефтехимического или возобновляемого сырья (на биологической основе). Почти все нефтехимические изоляционные материалы представляют собой полимеры. Как видно из рисунка, все нефтехимические изоляционные материалы являются ячеистыми. Материал является ячеистым, когда структура материала состоит из пор или ячеек. С другой стороны, многие растения содержат волокна для прочности. Поэтому почти все изоляционные материалы на биооснове являются волокнистыми (кроме вспененной пробки, которая является ячеистой).

    Органические изоляционные материалы могут быть классифицированы соответственно:

    • нефтехимические материалы (производство нефти/уголь)
      • Расширенный полистирол (EPS)
      • Эк экстрадированный полистирол (XPS)
      • Polyurethane (PUR)
      • FenoLIS FOALIS
      • Полиуретан (PUR)
      • . Фенолический FOALIS
      • . PIR)
    • Возобновляемые материалы (растительного/животного происхождения)
      • Целлюлоза
      • Пробка
      • Древесное волокно
      • Конопляное волокно
      • Льняная шерсть
      • Sheeps Wool
      • Изоляция хлопка

    Другие изоляционные материалы

    • Клеточное стекло
    • Airgel
    • Vacuum Panels

    Термическая плана.

    ватт), передаваемой через квадрат материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Типичные значения теплопроводности для пенополистирола  находятся между 0,030 и 0,040 Вт/м∙K .

    Теплоизоляция в основном основана на очень низкой теплопроводности газов. Газы обладают плохими свойствами теплопроводности по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразной структуре). Воздух и другие газы обычно являются хорошими изоляторами. Но главная польза в отсутствии конвекции. Поэтому многие изоляционные материалы (например, пенополистирол ) функционируют просто благодаря наличию газонаполненных карманов , предотвращающих крупномасштабную конвекцию .

    Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей, что приводит к быстрому снижению коэффициента теплопередачи.

    Пример – Изоляция из пенополистирола

    Основным источником потерь тепла из дома являются стены. Рассчитайте скорость теплового потока через стену 3 м х 10 м на площади (А = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и выполнена из кирпича с теплопроводностью k 1 = 1,0 Вт/м·К (плохой теплоизолятор). Предположим, что температура внутри и снаружи помещения составляет 22°C и -8°C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт/м 2 K и h 2 = 30 Вт/м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от окружающих и внутренних условий (ветер, влажность и т. д.).

    1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
    2. Теперь предположим теплоизоляцию на внешней стороне этой стены. Используйте изоляцию из пенополистирола толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,03 Вт/м·К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

    Решение:

    Многие процессы теплопередачи включают составные системы и даже включают комбинацию теплопроводности и конвекции. Часто удобно работать с  общий коэффициент теплопередачи , , известный как U-фактор  в этих композитных системах. Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

    Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

    1. голая стена

    Предполагая одномерный теплообмен через плоскую стенку и пренебрегая излучением, общий коэффициент теплопередачи можно рассчитать как:

    Тогда общий коэффициент теплопередачи равен:

    U = 1 / (1/10 + 0,15/1 + 1/30) = 3,53 Вт/м 2 K

    Тепловой поток можно рассчитать следующим образом:

    q = 3,53 [Вт/м 2 K] x 30 [K] = 105,9 Вт/м стена будет:

    q потери = q . A = 105,9 [Вт/м 2 ] x 30 [м 2 ] = 3177W

    1. композитная стена с теплоизоляцией

    Предполагая одномерную теплопередачу через плоскую композитную стену, отсутствие теплового контактного сопротивления и пренебрегая излучением, можно рассчитать общий коэффициент теплопередачи как:

    Тогда общий коэффициент теплопередачи равен:

    U = 1 / (1/10 + 0,15/1 + 0,1/0,03 + 1/30) = 0,276 Вт/м 2 K

    Тепловой поток можно рассчитать следующим образом:

    q = 0,276 [Вт/м 2 К] x 30 [К] = 8,28 Вт/м 2

    Общие потери тепла через эту стену будут:

    q убыток  = q . A = 8,28 [Вт/м 2 ] x 30 [м 2 ] = 248 Вт

    Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Необходимо добавить, что добавление очередного слоя теплоизолятора не дает столь высокой экономии. Это лучше видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивого теплообмена между двумя поверхностями равна разности температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

     

    Ссылки:

    Теплопередача:

    1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
    2. Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
    3. Министерство энергетики США, термодинамика, теплопередача и поток жидкости. DOE Fundamentals Handbook, Volume 2 of 3. May 2016.

    Ядерная и реакторная физика:

    1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд. , Addison-Wesley, Reading, MA (1983).
    2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
    3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
    4. Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
    5. WSC Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
    6. Г.Р.Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
    7. Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
    8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. 19 января.93.
    9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

    Advanced Reactor Physics:

    1. К.

      Learn more