Ветровой обогреватель
Как выбрать обогреватель: помогаем определиться с критериями
Бытовой обогреватель для квартиры или загородного дома, как правило, представляет собой довольно простое устройство. Конечно, иногда можно встретить высокотехнологичные обогреватели с дистанционным управлением со смартфона, однако в большинстве случаев ничего сложного в таких приборах не найти.
Соответственно, и выбрать подходящий обогреватель будет не слишком сложно. Главное — определиться с основными параметрами. В первую очередь это тип обогревателя и его мощность, во вторую — дополнительные возможности и опции.
Тип обогревателя
На современном рынке представлено несколько по-разному устроенных обогревателей, которые различаются не только по типу, но также и по своим качествам — некоторые из них лучше подойдут для городской квартиры, другие — для загородного дома, третьи — для обогрева технических помещений. Давайте разберемся, какие бывают обогреватели и чем они различаются.
На полках магазинов можно встретить масляные радиаторы, тепловентиляторы, тепловые пушки, конвекторы, инфракрасные обогреватели, инфракрасные пленочные, инфракрасно-конвективные обогреватели и тепловые завесы. Давайте рассмотрим их, начав с самых простых моделей.
Масляные радиаторы
Масляный радиатор хорошо знаком каждому: именно такой обогреватель можно чаще всего встретить на даче (особенно если она была построена более двадцати лет назад). Масляный радиатор представляет собой герметичный металлический корпус, внутри которого залито специальное минеральное масло. Нагревательный элемент (электрическая спираль) также находится внутри корпуса. Таким образом, спираль нагревает масло, масло — корпус, а уже корпус обогревателя нагревает окружающий воздух.
Масляный радиатор Sencor soh-2107bk — типичный представитель своего классаВизуально масляный радиатор похож на батарею центрального отопления: он зачастую имеет похожие отсеки-секции. Вентилятора у такого обогревателя, как правило, не предусмотрено.
Как и батарея центрального отопления, масляный радиатор лучше всего подходит для использования в помещениях, где требуется постоянный нагрев воздуха. Он долго разогревается и далеко не сразу переходит к обогреву воздуха. С другой стороны, температура самого радиатора не настолько велика, чтобы сжигать попавшие на него частицы пыли (а следовательно, постороннего запаха в помещении не будет). Масляные обогреватели работают практически бесшумно, долго сохраняют тепло после выключения и считаются экологически чистыми. Из минусов стоит отметить их довольно большой размер и малую мобильность (даже несмотря на наличие специальных ножек-колесиков).
Несложно сообразить, что если взять два равных по мощности обогревателя, то более компактный будет иметь бо́льшую температуру. А следовательно, лучше выбрать более крупную модель (если позволяет свободное место), что уменьшит вероятность случайных ожогов.
Тепловентиляторы
Тепловентилятор представляет собой сочетание нагревательного элемента (об их типах мы поговорим позже) и вентилятора, обеспечивающего циркуляцию воздуха в помещении. Многие из этих приборов могут работать в качестве обычного вентилятора, а вот греть воздух с выключенным вентилятором не могут — соответственно, бесшумных тепловентиляторов не бывает. Впрочем, всерьез рассчитывать на использование такого устройства в режиме «без обогрева» в качестве обычного вентилятора мы бы не советовали: дуют они, как правило, довольно слабо, и для того, чтобы создать эффект «остужающего ветерка», придется ставить его прямо напротив себя на расстоянии не более метра.
Основная задача тепловентилятора — быстро нагреть воздух в холодном помещении. Действительно, эффект от работы такого обогревателя становится заметен буквально через несколько минут. Ну а в случае, если обогреть нужно строительный объект или большое помещение, то для решения этой задачи подойдет тепловая пушка — по сути, тот же самый тепловой вентилятор, отличающийся повышенной мощностью и возможностью работы длительное время без пауз. «Расплата» за быстрый и мощный обогрев будет заключаться в высоком уровне шума и соответствующем потреблении электроэнергии: многие владельцы загородных домов, особенно достаточно давно построенных, сталкиваются с тем, что обогревать с помощью тепловентиляторов более двух помещений не представляется возможным, поскольку они просто-напросто «выедают» всю подведенную к дому мощность.
Также не стоит забывать о том, что тепловые пушки бывают очень большой мощности — например, 5 кВт, и даже еще больше. Не всякая розетка и не всякая проводка выдержит такое энергопотребление.
Тепловые пушки серии Prorab недвусмысленно намекают на использование в ходе ремонтаМногие дорогие тепловентиляторы имеют встроенный мотор, обеспечивающий вращение прибора в горизонтальной плоскости и, как следствие, улучшенную циркуляцию воздуха и более равномерный нагрев помещения.
Также следует упомянуть так называемые «керамические» тепловентиляторы — у них металлическая спираль не обдувается воздухом напрямую, а служит для нагрева керамического нагревательного элемента, который, в свою очередь, греет воздух. Керамические тепловентиляторы практически лишены основного недостатка обычного тепловентилятора — характерного запаха «жженой пыли», который возникает от сгорания частичек пыли, попадающих прямиком на раскаленную проволоку.
Конвекторы
Схожим образом работает и конвекторный обогреватель. Отличие от тепловентилятора тут заключается в отсутствии собственно вентилятора: воздух в конвекторном обогревателе проходит сквозь нагревательный элемент, после чего естественным образом поднимается вверх, освобождая место более холодным слоям воздуха, которые поднимаются от пола. Как следствие, размер нагревательного элемента у такого обогревателя будет существенно больше (по габаритам его можно сравнить с «плоской» батареей центрального отопления).
Обогреватели конвекторного типа подходят для установки на стену и, как правило, выглядят довольно стильно. Правда, нагревают воздух они не так быстро, как тепловые вентиляторы.
Отметим, что конвекторы идеально подходят для объединения в единую сеть, позволяющую централизованно управлять обогревом одного или нескольких помещений.
Инфракрасные обогреватели
Инфракрасные обогреватели устроены принципиально иначе: они нагревают не воздух, а окружающие предметы (в первую очередь — пол или стены) за счет инфракрасного излучения. Воздух в помещении нагревается уже от них. Нагревательным элементом у таких обогревателей служат кварцевые трубки или лампы.
Инфракрасные обогреватели работают бесшумно и могут использоваться там, где требуется подогрев не воздуха, а окружающих предметов — например, на открытом воздухе (для обогрева беседок и веранд). Также их нередко используют в ванных комнатах. Идеально они подходят и для работы в помещениях, где нужно сохранить некоторую невысокую температуру, а обогревать весь объем воздуха представляется нецелесообразным. А вот для обогрева помещений, где присутствует множество комнат и/или перегородок они подойдут не слишком хорошо: инфракрасные лучи не смогут обогнуть множественные препятствия.
Следует упомянуть, что поскольку ИК-излучение нагревает предметы, на которые попадает — одним из этих предметов является находящийся в помещении человек. Поэтому «ощущение тепла» от ИК-обогревателя появляется почти сразу после его включения.
Однако здесь стоит учитывать несколько моментов:
- ощущение появилось — но температура окружающей среды пока не изменилась;
- тепло только тем частям тела, на которые попадает излучение;
- в зависимости от расстояния до ИК-обогревателя, можно как почувствовать жару, так и не почувствовать вообще ничего.
Стоит выделить такие типы инфракрасных обогревателей, как «инфракрасно-конвективный» и «инфракрасные пленочные». Первые из них совмещают в себе преимущества конвективных и инфракрасных моделей. Обогрев обеспечивается как за счет нагревательного элемента, расположенного внутри обогревателя, так и за счет теплоотдачи лицевой поверхностью обогревателя. По мнению разработчиков, такой «комбинированный» способ обогрева позволяет создать в помещении комфортный микроклимат без лишних затрат электроэнергии.
Настенный пленочный обогреватель НЛО, замаскировавшийся под картинуЧто касается инфракрасных пленочных обогревателей, то они представляют собой тонкий нагревательный элемент из пленки и фольги. Такие обогреватели нередко выполняются в виде ковриков или настенных картин (дизайн у таких картин, впрочем, сомнительный). Нашлось им применение и в качестве «теплого пола». Мощность инфракрасных пленочных обогревателей обычно не превышает 400-500 Вт.
Тепловые завесы
Тепловые завесы — отдельная категория приборов, выполняющих в том числе и роль обогревателя. Тепловые завесы устанавливаются в дверных (или оконных) проемах и создают поток теплого воздуха, блокирующий сквозняки. Тепловые завесы обычно используются в помещениях, в которых часто открываются двери (например, в офисах), либо там, где существует опасность сквозняков и нужно создать дополнительную теплую зону.
Электрическая тепловая завеса Daire НТ 508 мощностью до 5 кВтСправятся они и с обогревом небольших помещений, однако со сложными задачами по обогреву тепловая завеса не справится. Стоит отметить, что мощность тепловой завесы нужно выбирать в соответствии с размерами двери или окна, на который она будет установлена.
КПД и производительность
Для каждого обогревателя производитель указывает комфортную и максимальную площадь помещения, для которого предназначен тот или иной прибор. Благодаря этим параметрам проще всего понять, прибор какой мощности вам потребуется. В большинстве случаев зависимость тут окажется строго линейной: если мощность обогревателя будет в два раза выше, то и тепла за единицу времени он отдаст примерно в два раза больше.
Тип обогревателя в данном случае не имеет значения: если два обогревателя потратили одинаковое количество энергии, то и помещение они нагрели одинаково (но не обязательно за одно и то же время!).
Управление и индикация
Простые обогреватели имеют механическую систему управления, которая выглядит как набор из регулирующих температуру ручек и кнопок включения/выключения. Такие обогреватели могут работать в режиме полной либо частичной нагрузки и самостоятельно отключаться при достижении определенной температуры, однако на большее они, как правило, не способны.
Также следует учесть, что регулировка температуры будет довольно грубая, и, как правило, не в градусах, а в виде вращающейся ручки со значениями «минимум», «максимум» и несколькими промежуточными безымянными градациями. Таким образом, вас ждет довольно долгая процедура подбора оптимального положения этой ручки в соответствии с собственными ощущениями от температуры в помещении.
Механическая система управления обогревателемСовременные модели все чаще оснащаются электронной системой управления, включающей набор механических или сенсорных кнопок и цифровой дисплей. Возможности у таких обогревателей гораздо более широкие: они могут включаться и выключаться по расписанию, поддерживать установленную температуру (в градусах) в помещении, отображать температуру и текущее время на дисплее и многое другое. К таким обогревателем нередко прилагается пульт дистанционного управления.
Электронная система управления с индикацией температурыНаконец, самые «продвинутые» обогреватели имеют возможность дистанционного управления. Такие устройства имеют встроенный передатчик Wi-Fi или Bluetooth, благодаря чему управлять устройством можно со смартфона — с помощью специального приложения.
Возможности и функции
В зависимости от сложности обогреватель может иметь разный набор возможностей и функций. Самые простые обогреватели (например, многие масляные) нагреваются до определенной температуры, после чего на некоторое время отключаются. Более продвинутые приборы способны контролировать температуру в помещении и включаться и отключаться в зависимости от окружающих условий.
Обогреватели с электронной системой управления могут быть оснащены отложенным стартом и временем окончания работы, включаться и выключаться по расписанию и нередко имеют набор программ для различных сценариев использования.
Обогреватели с дистанционным управлением посредством Bluetooth или Wi-Fi позволяют пользователю контролировать их работу дистанционно. Благодаря такому решению обогреватель можно включить или выключить дистанционно. Например, будет полезно включить обогреватель перед тем, как отправиться на дачу, чтобы приехать в уже прогретый дом.
Уровень шума
Для большинства обогревателей в документации указан максимальный уровень шума. На этот параметр нужно смотреть в случае, если обогреватель будет установлен в спальне, в детской или в рабочем кабинете — в общем, там, где требуется тишина. Наиболее тихие обогреватели — инфракрасные. Следом за ними идут масляные обогреватели, обогреватели конвекторного типа, а затем — тепловентиляторы и тепловые пушки.
Стоит учесть, что иногда шум может издавать температурное реле либо динамик, оповещающий пользователя о смене режима работы (или срабатывающий при нажатии кнопок). Поскольку такие звуки могут оказаться весьма назойливыми, лучше заранее убедиться, что подобные эффекты отсутствуют. Кстати, не помешает проверить и яркость дисплея, чтобы неожиданно не оказалось, что обогреватель, который предполагается установить в спальне, светит слишком ярко.
Защита
Практически все обогреватели имеют защитную систему, отключающую их при перегреве. Встроенный предохранитель или датчик перегрева, расположенный в месте выхода воздуха, позволит избежать пожара и излишней нагрузки на электросеть.
У многих обогревателей также имеется система, отключающая прибор в случае его падения. При условии соблюдения техники безопасности (обогреватель правильно установлен и не накрыт тряпками и посторонними вещами) такие системы гарантируют, что прибор не станет причиной пожара.
Однако обжечься о многие обогреватели все-таки можно. Поэтому если в доме есть дети и пожилые люди, лучше подумать о покупке максимально безопасного обогревателя, который будет трудно зацепить или уронить (к таким, например, относятся настенные обогреватели).
В случае, если обогреватель предполагается установить в ванной комнате, стоит обратить внимание на модели с влагозащищенным корпусом. Это позволит не беспокоиться о попадании воды в корпус устройства и возможном коротком замыкании. Использование обогревателя в ванной позволит не только добиться комфортной температуры, но и предотвратить появление грибка на стенах.
Тип монтажа
Различные обогреватели допускают разные способы монтажа. Многие из них просто ставятся на пол (масляные обогреватели) и имеют специальные колесики для перемещения. Другие допускают установку на любую ровную поверхность, например на стол или подоконник (к ним относятся многие тепловентиляторы). Такие обогреватели не требуют особых усилий по монтажу. Как максимум — пользователю придется самостоятельно собрать ножки с колесиками.
Также многие обогреватели имеют несколько вариантов монтажа на выбор пользователя: настенный, напольный, потолочный или за навесной потолок. При этом одна и та же модель может допускать сразу несколько вариантов установки (например, настенный или потолочный). В этом случае установка потребует наличия дрели или перфоратора и других сопутствующих инструментов, с помощью которых осуществляется монтаж крепежных элементов.
Подводим итоги
Бытовые электрические обогреватели бывают четырех основных типов:
- масляный радиатор
- тепловентилятор или тепловая пушка
- конвектор
- инфракрасный обогреватель
Основными отличительными свойствами обогревателя, критичными для пользователя, являются:
- скорость прогрева помещения
- шумность
- мобильность, т.
е. удобство перемещения обогревателя с места на место
- негативное воздействие на воздух
Сделать окончательный выбор вам поможет таблица, в которой мы оценили каждый параметр для каждого типа обогревателей.
Скорость прогрева помещения | Шумность | Мобильность | Воздействие на воздух | |
---|---|---|---|---|
Масляный радиатор | низкая | низкая | средняя | нет |
Тепловентилятор | высокая | высокая | высокая | запах «жженой пыли» |
Тепловая пушка | очень высокая | очень высокая | высокая | запах «жженой пыли» |
Керамический тепловентилятор | средняя | высокая | высокая | почти без запаха |
Конвектор | низкая | бесшумный | средняя | нет |
Инфракрасный обогреватель | низкая | бесшумный | низкая | нет |
Обогреватель ветровой Wonder Warm + пульт в комплекте (id 57712664)
Звоните нам по телефону +77755437210
Или пишите в Whatsapp
Характеристики обогревателя:
Мощность - 390 Ватт. | |
С керамическим нагревательным элементом. | |
Температура от 15 до 32 градусов. | |
Работает от розетки 220 вольт. | |
Потребляемая мощность - 400 Ватт. | |
Таймер на 10 минут. | |
Регулировка подачи скорости тепла - 2 уровня. | |
Габариты: высота-18 см, ширина-10 см, глубина-15 см. | |
Вес - 600 грамм. |
Портативный обогреватель Wonder Warm - это компактный прибор, который подключается прямо к стенной розетке, не занимая свободного места. Однако он настолько мощный, что превращает холодную комнату в теплое и уютное местечко.
Согласны мёрзнуть и дрожать в собственном доме, лишь бы не росли коммунальные счета? Центральное отопление дает мало тепла?
Забудьте о громоздких и прожорливых обогревателях – закажите эффективный термо-керамический прибор в чрезвычайно компактном корпусе, который поможет согреть вас и вашу семью!
Портативный обогреватель для всей комнаты подключается прямо к розетке в стене, совсем не занимая места. Но его мощности достаточно, чтобы сделать холодную комнату более теплой и комфортной.
Как использовать обогреватель?
1. Просто подключите к розетке, он работает без проводов и не занимает места на полу. Подключите его к любой розетке и нажмите кнопку. И сразу начнется обогрев.
2. Отрегулируйте термостат. Регулятор термостата дает вам точный контроль температуры, а 2-х скоростной вентилятор отвечает за циркуляцию воздуха, чтобы ваша комната оставалась теплой и уютной.
3. Согрейте любую комнату дома или на работе!
- Гостиная
- Спальня
- Ванная
- Детская
- Гараж
- Офис
Преимущества перед обычными обогревателями:
- Подключается напрямую к розетке — никаких проводов!
- Можно устанавливать комфортную температуру (15-32°С).
- Программируемый таймер (12 часов).
- 2 скорости работы вентилятора.
- Можно брать с собой в поездки.
- Портативный, экономит место.
К тому же он действительно экономичен, потому что потребляет минимум электроэнергии при ежедневном использовании – а значит, обходится в копейки!
Приобретайте по KASPI RED
Если у Вас возникли вопросы или есть предложения, мы будем рады Вам помочь.
Вы можете заказать в онлайн интернет-магазине www.sportnadom.kz, либо посмотреть и потрогать в нашем выставочном павильоне в городе Алматы, по адресу: ул. Толе би 273А, блок 5, магазин спортивного оборудования «Спорт На Дом».
Hurricane Wind Power DC Водонагревательный элемент 48 Вольт 600 Вт погружной нагреватель
Сейчас: $31,19
(пока отзывов нет) Написать обзор
- Артикул:
- ДК48600
- Состояние:
- Новый
- Вес:
- 1,00 фунта
- Ширина:
- 7,50 (в)
- Высота:
- 1,50 (в)
- Глубина:
- 1,50 (в)
- Доставка:
- Бесплатная доставка
- Бесплатная доставка:
- Бесплатная доставка доступна только для заказов, отправленных в пределах 48 смежных штатов США. Плата за доставку будет рассчитана и выставлена в счет для заказов, отправляемых за пределы этой области.
Стоимость доставки должна быть оплачена до отправки заказа.
Поделиться этой статьей
- Обзор
- Видео продукта
- Отзывы
Описание продукта
Hurricane Wind Power
7-ДЮЙМОВЫЙ ЭЛЕМЕНТ ВОДОНАГРЕВАТЕЛЯ ПОСТОЯННОГО ТОКА
48 Вольт 600 Вт
Подходит для стандартных водонагревателей с 1 ”NPT
Сначала мы начинаем с сплошной латунной основы и медной
. Затем он получает намель для Long Life. ИСПОЛЬЗОВАНИЕ НАГРЕВ ВОДЫ ВЕТРОТУРБИНЫ Нагрев воды непосредственно с помощью генератора ветряной турбины (с аккумуляторной батареей или без нее). Используемая мощность может храниться в аккумуляторной батарее или подключаться к сети с помощью подходящего сетевого инвертора. Поэтому для отвода лишней энергии на нагрев воды часто используют сбросную нагрузку, чтобы она не тратилась впустую и чтобы ветряная турбина не вращалась так быстро, что может быть повреждена. На изображении выше показан типичный водяной нагревательный элемент 48 В, который можно http://hurricanewindpower.com Элемент водонагревателя постоянного тока 12 24 и... Бесплатная доставка Бесплатная доставка доступна только для заказов, отправленных в пределах 48 смежных штатов США. Плата за доставку будет рассчитана и выставлена в счет для заказов, отправляемых за пределы этой области. Стоимость доставки должна быть оплачена до отправки заказа. Написать обзор Это веб-сайт, работающий от солнечной энергии, что означает, что он иногда отключается. Солнечная энергия При правильных условиях механический ветряк с увеличенной тормозной системой является дешевой, эффективной и устойчивой системой отопления. Изображение: Иллюстрация Роны Бинай для журнала Low-tech Magazine. Производство возобновляемой энергии почти полностью направлено на производство электроэнергии. Однако мы используем больше энергии в виде тепла, которое солнечные батареи и ветряные турбины могут производить только косвенно и относительно неэффективно. Солнечный тепловой коллектор пропускает преобразование в электричество и поставляет возобновляемую тепловую энергию прямым и более эффективным способом. Гораздо менее известно, что механический ветряк может делать то же самое в ветреную погоду - за счет увеличенной тормозной системы ветряк может генерировать много прямого тепла за счет трения. Механический ветряк также может быть соединен с механическим тепловым насосом, что может быть дешевле, чем использование газового котла или электрического теплового насоса, приводимого в действие ветряной турбиной. В глобальном масштабе потребность в тепловой энергии соответствует одной трети предложения первичной энергии, в то время как потребность в электроэнергии составляет лишь одну пятую часть. 1 В умеренном или холодном климате доля тепловой энергии еще выше. Например, в Великобритании тепло составляет почти половину общего потребления энергии. 2 Если рассматривать только домохозяйства, то тепловая энергия для отопления помещений и нагрева воды в умеренном и холодном климате может составлять 60-80% от общего бытового спроса на энергию. Несмотря на это, возобновляемые источники энергии играют незначительную роль в производстве тепла. Основным исключением является традиционное использование биомассы для приготовления пищи и отопления, но в «развитом» мире даже биомасса часто используется для производства электроэнергии вместо тепла. Использование прямого солнечного тепла и геотермального тепла обеспечивает менее 1% и 0,2% мирового спроса на тепло соответственно 4 5 . В то время как на возобновляемые источники энергии приходится более 20% мирового спроса на электроэнергию (в основном гидроэнергетика), на них приходится только 10% глобального спроса на тепло (в основном биомасса). 5 6 Электричество, производимое возобновляемыми источниками энергии, может косвенным образом преобразовываться и преобразуется в тепло. Например, ветряная турбина преобразует энергию вращения в электричество с помощью своего электрического генератора, а затем это электричество можно преобразовать в тепло с помощью электрического нагревателя, электрического котла или электрического теплового насоса. В частности, многие правительства и организации продвигают электрический тепловой насос как устойчивое решение для производства тепла из возобновляемых источников. Однако солнечную и ветровую энергию можно использовать и напрямую, без предварительного преобразования их в электричество, и, конечно же, то же самое относится и к биомассе. Прямое производство тепла дешевле, может быть более энергоэффективным и более устойчивым, чем косвенное производство тепла. Изображение: прототипы ветряков, производящих тепло, построенные Эсрой Л. Соренсен в 1974 году. Фото Клауса Найбро. Источник: 13 Прямая альтернатива солнечной фотоэлектрической энергии – солнечная тепловая энергия, технология, появившаяся в девятнадцатом веке вслед за более дешевыми технологиями производства стекла и зеркал. Солнечную тепловую энергию можно использовать для нагрева воды, отопления помещений или промышленных процессов, и это в 2-3 раза более энергоэффективно по сравнению с непрямым путем, включающим преобразование электроэнергии. Почти никто не знает, что ветряк может производить тепло напрямую Прямая альтернатива ветряной энергии, известная всем, — это старомодный ветряк, которому не менее 2000 лет. Он передавал энергию вращения от своего ветряного ротора непосредственно на ось машины, например, для распиловки дерева или измельчения зерна. Этот старомодный подход остается актуальным, в том числе в сочетании с новыми технологиями, потому что он был бы более энергоэффективным по сравнению с преобразованием энергии сначала в электричество, а затем обратно в энергию вращения. Однако старомодный ветряк может производить не только механическую, но и тепловую энергию. Проблема в том, что об этом почти никто не знает. Даже Международное энергетическое агентство не упоминает прямое преобразование ветра в тепло, когда представляет все возможные варианты производства возобновляемого тепла. 1 Ветряная мельница оригинального типа преобразует энергию вращения непосредственно в тепло путем создания трения в воде с помощью так называемого «водяного тормоза» или «машины Джоуля». Изображение; система отопления на основе водяного тормозного ветряка. Источник: 8 Машина Джоуля изначально задумывалась как измерительный прибор. Джеймс Джоуль построил его в 1840-х годах для своего знаменитого измерения механического эквивалента тепла: одна калория равна количеству энергии, необходимой для повышения температуры 1 кубического сантиметра воды на 1 градус Цельсия. 10 Теплогенератор, основанный на этом принципе, представляет собой ветряной смеситель или крыльчатку, установленную в изолированном баке, наполненном водой. Самое захватывающее в водяных тормозных мельницах то, что гипотетически они могли быть построены сотни или даже тысячи лет назад. Для них требуются простые материалы: дерево и/или металл. Но хотя мы не можем исключить их использование в доиндустриальные времена, первое упоминание о ветряках, производящих тепло, относится к 1970-м годам, когда датчане начали их строить после первого нефтяного кризиса. Изображение: теплогенератор теплового ветряка. Источник: 8 В то время Дания почти полностью зависела от импорта нефти для отопления, что оставило многие домохозяйства в холоде, когда подача нефти была нарушена. Поскольку у датчан уже была сильная культура изготовления небольших ветряных турбин, вырабатывающих электроэнергию на фермах, они начали строить ветряные мельницы для обогрева своих домов. Некоторые избрали непрямой путь, преобразуя электроэнергию, вырабатываемую ветром, в тепло с помощью электронагревательных приборов. Прямой подход к производству тепла значительно дешевле и устойчивее, чем преобразование энергии ветра или солнца в тепло с помощью электрических нагревательных устройств. На это есть две причины. Во-первых, и это самое главное, механические ветряные мельницы менее сложны, что делает их более доступными и менее ресурсоемкими в изготовлении, а также увеличивает срок их службы. В ветряной мельнице с водяным тормозом можно исключить электрический генератор, силовые преобразователи, трансформатор и редуктор, а из-за экономии веса ветряная мельница должна быть менее прочной. Машина Джоуля имеет меньший вес, меньшие размеры и более низкую стоимость, чем электрический генератор. 11 Также немаловажно, что стоимость аккумулирования тепла на 60-70% ниже по сравнению с аккумуляторами или использованием резервных ТЭС. 2 Ветряная мельница с водяным тормозом, построенная в Институте сельскохозяйственной техники в 1974 году. Во-вторых, преобразование энергии ветра или солнца непосредственно в тепло (или механическую энергию) может быть более энергоэффективным, чем при преобразовании электричества. Это означает, что для подачи определенного количества тепла требуется меньше преобразователей солнечной и ветровой энергии и, следовательно, меньше места и ресурсов. Короче говоря, ветряная мельница, вырабатывающая тепло, устраняет основные недостатки энергии ветра: ее низкая удельная мощность и ее прерывистость. Механические ветряные мельницы менее сложны, что делает их более доступными и менее ресурсоемкими в строительстве, а также увеличивает срок их службы Кроме того, прямое производство тепла значительно повышает экономичность и устойчивость небольших типов ветряных мельниц. Испытания показали, что небольшие ветряные турбины, производящие электроэнергию, очень неэффективны и не всегда производят столько энергии, сколько необходимо для их производства. Датская ветряная мельница с водяным тормозом 1970-х годов была относительно небольшой машиной с диаметром ротора около 6 метров и высотой около 12 метров. Более крупные ветряные электростанции, производящие тепло, были построены в 1980-х годах. Чаще всего используются простые деревянные лопасти. Всего задокументировано не менее дюжины различных моделей, как самодельных, так и коммерческих. 7 Многие из них были построены из бывших в употреблении деталей автомобилей и других выброшенных материалов. 13 Изображение: ветряк Calorius, производящий до 4 кВт тепла. Изображение предоставлено Nordic Folkecenter в Дании. Один из первых датских тепловых ветряков меньшего размера прошел официальные испытания. Calorius type 37 с ротором диаметром 5 метров и высотой 9 метров производил 3,5 киловатта тепла при скорости ветра 11 м/с (сильный ветер, 6 баллов по шкале Бофорта). Более крупный водяной ветряк (диаметр ротора 7,5 м, башня 17 м) был построен в 1982 году братьями Сванеборг и отапливал дом одного из них (другой брат выбрал ветряк и электрическое отопление). система). Ветряк, имевший три лопасти из стеклопластика, по неофициальным замерам производил до 8 киловатт тепла — сравнимо с тепловой мощностью электрического котла для скромного дома. 7 Еще в 1980-х годах Кнуд Бертоу построил самую сложную на сегодняшний день ветряную электростанцию: LO-FA. В других моделях выделение тепла происходило в нижней части башни — от вершины ветряка к низу шла шахта, где устанавливался водяной тормоз. Однако в ветряной мельнице LO-FA все механические части для преобразования энергии были перемещены на вершину башни. Башня ветряной мельницы LO-FA была заполнена 15 тоннами воды в теплоизолированном резервуаре: горячую воду можно было буквально откачивать из ветряной мельницы. LO-FA также был самым большим из теплогенерирующих ветряков с диаметром ротора 12 метров. Его тепловая мощность оценивалась в 90 киловатт при скорости ветра 14 м/с (по шкале Бофорта 7). Этот результат кажется чрезмерным по сравнению с другими ветряками, производящими тепло, но выход энергии ветряной мельницы увеличивается более чем пропорционально диаметру ротора и скорости ветра. Кроме того, фрикционной жидкостью в водяном тормозе была не вода, а гидравлическое масло, которое можно нагревать до гораздо более высоких температур. Затем масло передало свое тепло резервуару для воды в градирне. 7 Интерес к ветряным мельницам, вырабатывающим тепло, вновь проявился несколько лет назад, хотя на данный момент он касается лишь нескольких научных исследований. Исследователи объясняют и иллюстрируют работу ветряной мельницы с водяным тормозом и рассчитывают оптимальную производительность технологии. Было обнаружено, что характеристики крутящего момента ветрового ротора и крыльчатки должны быть тщательно согласованы для достижения максимальной эффективности. Например, для очень маленького ветряка Савониуса, который ученые использовали в качестве модели (диаметр ротора 0,5 м, башня 2 м), было рассчитано, что диаметр крыльчатки должен составлять 0,388 м. Затем исследователи провели моделирование в течение пятидесяти часов, чтобы рассчитать тепловую мощность ветряной мельницы. Хотя Савониус — тихоходный ветряк, плохо приспособленный для выработки электроэнергии, он оказался отличным производителем тепла: небольшой ветряк производил до 1 кВт тепловой мощности (при скорости ветра 15 м/с). Исследование, проведенное в 2013 году с использованием прототипа, показало, что эффективность системы составляет 91% Очевидно, не всегда штормовая погода, а значит, не менее важна средняя скорость ветра. В исследовании 2015 года исследуются возможности использования ветряных электростанций для выработки тепла в Литве, прибалтийской стране с холодным климатом, зависящей от импорта дорогого топлива. 14 Исследователи подсчитали, что при средней скорости ветра в стране (4 м/с по шкале Бофорта 3) для выработки одного киловатта тепла требуется ветряк с диаметром ротора 8,2 метра. Теплогенерирующий ветряк с водяным тормозом, размещенный внутри нижней части башни. Они сравнивают это с потребностью в тепловой энергии энергоэффективного нового здания площадью 120 м2, отапливаемого по современным стандартам комфорта, и делают вывод, что ветряная электростанция может покрыть от 40 до 75% годовой потребности в отоплении ( в зависимости от класса энергоэффективности сооружения). 14 Средняя скорость ветра также не гарантируется, а это означает, что ветряк, производящий тепло, требует аккумулирования тепла, иначе он будет обогревать только при дуновении ветра. Один кубический метр нагретой воды (1 тонна, 1000 литров) может содержать до 90 кВтч тепла, что составляет примерно один-два дня подачи для семьи из четырех человек. Та же ветряная мельница, что и на фото выше, вид снизу. Источник: 7 Таким образом, чтобы обеспечить достаточное хранилище для моста в течение недели без ветра, требуется до 7 тонн воды, что соответствует объему 7 кубических метров плюс изоляция. Ветряк, вырабатывающий тепло, также можно комбинировать с солнечным котлом, чтобы и солнце, и ветер могли давать прямую тепловую энергию, используя меньший резервуар для воды. Ветряк, вырабатывающий тепло, также можно комбинировать с солнечным котлом, чтобы и солнце, и ветер могли вырабатывать непосредственную тепловую энергию, используя один и тот же резервуар для хранения тепла. В этом случае появляется возможность построить довольно надежную систему отопления с меньшим баком-аккумулятором тепла, ведь сочетание двух – часто дополняющих друг друга – источников энергии увеличивает шансы прямого теплоснабжения. Особенно в менее солнечном климате ветряные мельницы, производящие тепло, являются отличным дополнением к солнечной тепловой системе, потому что последняя производит относительно меньше тепла зимой, когда потребность в тепле максимальна. Самые последние и обширные исследования на сегодняшний день относятся к 2016 и 2018 годам и сравнивают различные типы ветряков, производящих тепло, с различными типами косвенного производства тепла. 1 15 В этом втором типе теплового ветряка тепло вырабатывается механическими тепловыми насосами или гидродинамическими замедлителями, а не водяным тормозом. Механический тепловой насос — это просто тепловой насос без электродвигателя. Вместо этого ветряной ротор напрямую соединен с компрессором (компрессорами) теплового насоса. Это включает в себя одно преобразование энергии меньше, что делает комбинацию как минимум на 10% более энергоэффективной, чем электрический тепловой насос, приводимый в действие ветряной турбиной. Гидродинамический замедлитель хорошо известен как тормозная система большегрузных автомобилей. Подобно джоулевой машине, он преобразует энергию вращения в тепло без участия электричества. Сравнение различных типов прямого и непрямого нагрева. Источник: 15 В исследовании сравниваются теплогенерирующие ветряки на основе замедлителей и механических тепловых насосов с непрямым производством тепла с использованием электрических котлов и электрических тепловых насосов. В нем сравниваются эти четыре технологии для трех размеров систем: небольшой ветряк, предназначенный для обогрева автономного дома, большой ветряк, предназначенный для обеспечения теплом деревни, и ветряная электростанция, производящая тепло для 20 000 жителей. Четыре концепции отопления ранжированы на основе их ежегодных капитальных и эксплуатационных расходов, исходя из срока службы 20 лет. 1 15 Непосредственное подключение механического ветряка к механическому тепловому насосу дешевле, чем использование газового котла или сочетание ветряной турбины и электрического теплового насоса. Для автономной системы прямое подключение механического ветряка к механическому тепловому насосу является самым дешевым вариантом, тогда как сочетание ветряной турбины и электрического котла обходится в два-три раза дороже. Все остальные технологии находятся между ними. Принимая во внимание как инвестиционные, так и эксплуатационные затраты, небольшие ветряные генераторы тепла с механическими тепловыми насосами одинаково дороги или дешевле, чем обычные газовые котлы, если исходить из типичной производительности небольшого ветряка (который производит - в течение одного года - 12% до 22% от максимальной выходной энергии). Изображение: Ветряк с водяным тормозом, разработанный О. Хельгасоном (слева), водяной тормоз с системой переменной нагрузки (справа). Изображения из «Испытания при очень высокой скорости ветра ветряной мельницы, управляемой водяным тормозом», О. Хелгасон и А.С. Сигурдсон, Научный институт Исландского университета. Источник: 7 С другой стороны, комбинация небольшой ветряной турбины и электрического теплового насоса требует, чтобы ветряная мельница с «коэффициентом мощности» не менее 30% стала конкурентоспособной по стоимости с газовым отоплением – но такой высокой исполнение очень необычное. Из-за больших потерь энергии на транспортировку тепла ветряк лучше всего подходит в качестве децентрализованного источника энергии, обеспечивая теплом автономное домашнее хозяйство или, в оптимальном случае, небольшой город. Однако более крупные системы также обнаруживают проблему при масштабировании технологии: хранение тепла может быть дешевле и эффективнее, чем хранение электроэнергии, но для транспорта верно обратное: потери энергии при транспортировке тепла намного больше, чем потери энергии при транспортировке. передача электроэнергии. Ученые подсчитали, что максимальное расстояние, достижимое с точки зрения затрат при оптимальных ветровых условиях, составляет 50 км. Следовательно, тепловая ветряная электростанция лучше всего подходит в качестве децентрализованного источника энергии, обеспечивая теплом автономное домашнее хозяйство или, в оптимальном случае, относительно небольшой город или промышленную зону. Для еще более крупных систем энергию необходимо транспортировать в виде электричества, и в этом случае прямое производство тепла со всеми его преимуществами становится непривлекательным. Ветряные мельницы, производящие тепло, также исследуются для производства возобновляемой электроэнергии, главным образом потому, что они предлагают лучшее решение для хранения энергии по сравнению с батареями или другими распространенными технологиями. 16 В этих системах вырабатываемое тепло преобразуется в электричество с помощью паровой турбины. Система хранения аналогична системе концентрированной солнечной электростанции (CSP), а солнечные концентраторы заменены ветряными мельницами, производящими тепло. «Вихретоковый нагреватель». Источник: 9 Поскольку для эффективного производства электроэнергии с помощью паровой турбины необходимы высокие температуры, эти системы не могут использовать джоулевые машины или гидродинамические замедлители, а вместо этого полагаются на тип замедлителя, называемый «вихретоковым нагревателем». (или «индукционный нагреватель»). Они состоят из магнита, установленного на вращающемся валу, и могут достигать температуры до 600 градусов по Цельсию. Используя вихретоковые нагреватели, ветряные мельницы могут обеспечивать прямой нагрев при более высоких температурах, что еще больше расширяет их потенциальное применение в промышленности. Однако использование аккумулированного тепла для производства электроэнергии значительно дороже и менее экологично по сравнению с использованием тепловых ветряков для прямого производства тепла. Преобразование накопленного тепла в электричество имеет эффективность не более 30%, а это означает, что две трети энергии ветра теряются из-за ненужных преобразований энергии, и то же самое верно, когда солнечная тепловая энергия используется для производства электроэнергии. Таким образом, прямое производство тепла дает возможность сократить в три раза больше выбросов парниковых газов и ископаемого топлива, используя то же количество ветряных мельниц, которые также дешевле и экологичнее в строительстве. Будем надеяться, что прямому производству тепла будет отдан тот приоритет, которого оно заслуживает. Несмотря на потепление климата, спрос на тепловую энергию высок как никогда. Крис Де Декер Чтобы оставить комментарий, отправьте электронное письмо на адрес solar (at) lowtechmagazine (dot) com. Нитто, дипломированный инженер Алехандро Николас, Карстен Агерт и Ивонн Шольц. «ВЕТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ ТЕПЛОВОЙ ЭНЕРГИИ (ВТЭС)». ↩↩↩↩ Интеграция накопителя тепловой энергии в энергетическую сеть, Шарьяр Ахмед, 2017 ↩↩ Светлое будущее заводов, работающих на солнечной энергии, Крис Де Декер, Low-tech Magazine, 2011 ↩ Solar Heat Worldwide, издание 2018 г. Renewables 2018, Heat, Международное энергетическое агентство (МЭА). ↩↩ Всемирный банк: производство электроэнергии из возобновляемых источников. ↩ Расцвет современной энергии ветра: энергия ветра для всего мира. Pan Stanford Publishing, 2013. См. главу 13 («Ветряные мельницы с водяным тормозом», Йорген Крогсгаард) и главу 16 («Обреченные на забвение», Пребен Мегаард). Кажется, это единственные документы на английском языке о датских ветряных мельницах с водяным тормозом. ↩↩↩↩↩↩↩↩ Чакиров, Рустам и Юрий Вагапов. «Прямое преобразование энергии ветра в тепло с помощью джоулевой машины». Четвертая международная конференция по экологии и компьютерным наукам (ICECS 2011), Сингапур, сентябрь 2011 г. ↩↩↩↩↩ МАЛАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА С ВИХРЕТОЧНЫМ НАГРЕВАТЕЛЕМ НА ПОСТОЯННЫХ МАГНИТАХ, ИОН СОБОР, ВАСИЛЬ РАШЬЕ, АНДРЕЙ ШИЧУК и РОДИОН ЧЮПЕРЦЭ. Эксперимент Джоуля: историко-критический подход, советник Маркоса Поу Галло. ↩ Окадзаки, Тору, Ясуюки Шираи и Такетсуне Накамура. «Концептуальное исследование ветроэнергетики с использованием прямого преобразования тепловой энергии и аккумулирования тепловой энергии». Возобновляемая энергия 83 (2015): 332-338. ↩ Реальные испытания небольших ветряных турбин в Нидерландах и Великобритании, Крис Де Декер, The Oil Drum, 2010. ↩ Selfbuilders, веб-сайт Winds of Change, Эрик Гроув-Нильсен. ↩↩↩↩↩ Чернецкене, Юргита и Тадас Жданкус. «Использование энергии ветра для обогрева энергоэффективных зданий: анализ возможностей». Журнал устойчивой архитектуры и гражданского строительства 10.1 (2015): 58-65. ↩↩ Цао, Карл-Кин и др. «Расширение горизонтов преобразования энергии в тепло: оценка затрат на новые концепции обогрева помещений с помощью ветряных тепловых энергетических систем».
Генераторы ветряных турбин используются в основном для производства электроэнергии.
При очень сильном ветре и/или когда батареи полностью заряжены, ветряная турбина может генерировать больше тока, чем могут выдержать батареи.
Водяной нагрев отводной нагрузки
ввинтить в отверстие сливного крана погружного нагревателя.
При использовании в качестве диверсионной (сбросной) нагрузки такой элемент подключается к батареям через регулятор заряда.
Когда регулятор определяет, что аккумуляторы полностью заряжены, и направляет выработанное электричество на элемент , который нагревает воду.
Видео о продуктах
Видео Скрыть видео Показать видео
Элемент водонагревателя постоянного тока 12 24 и 48 В ветровое и солнечное отопление Hurricane
Пользовательское поле
Обзоры продуктов
Hurricane Wind Power
Элемент водонагревателя постоянного тока 48 В, 600 Вт, погружной нагревательный элемент
Обогрейте свой дом с помощью механической ветряной мельницы
Тепло по сравнению с электричеством
3
Прямое и непрямое производство тепла
В результате получается тепло, вырабатываемое энергией ветра.
Ветряная мельница с водяным тормозом
Теплогенератор, основанный на этом принципе, представляет собой ветряной смеситель или крыльчатку, установленную в изолированном баке, наполненном водой. Благодаря трению между молекулами воды механическая энергия преобразуется в тепловую. Нагретую воду можно закачивать в здание для обогрева или стирки, и та же концепция может быть применена к производственным процессам на заводе, требующим относительно низких температур. 7 8 9
Другие, однако, разработали механические ветряные мельницы, которые напрямую производили тепло.
Дешевле строить
Фото Рикарда Матцена. Источник: 13
12 Однако использование аналогичных моделей для производства тепла снижает потребление энергии и затраты, увеличивает срок службы и повышает эффективность.
Сколько тепла может производить ветряная мельница?
Это сравнимо с тепловой мощностью самых маленьких электрических котлов для отопления помещений. с 19С 93 по 2000 год датская фирма Westrup построила в общей сложности 34 водяных тормозных ветряка на основе этой конструкции, а к 2012 году в эксплуатации оставалось еще 17. 7
Нижние 10 метров 20-метровой башни были заполнены 15 тоннами воды в изолированном резервуаре. Следовательно, горячую воду можно было буквально выкачивать из ветряной мельницы. 7
Возобновление интереса
В статье 2011 года немецкие и британские ученые пишут, что «небольшие и отдаленные домохозяйства в северных регионах нуждаются в тепловой энергии, а не в электроэнергии, и поэтому в таких местах следует строить ветряные турбины для выработки тепловой энергии». 8
8 Исследование, проведенное в 2013 году с использованием прототипа, дало аналогичные результаты и рассчитало, что эффективность системы составляет 91%. 9 Это сравнимо с эффективностью ветряной турбины, нагревающей воду с помощью электричества.
Мельница была построена Йоргеном Андерсеном в 1975 году и стояла в Серритслеве. Фото Клауса Нибро. Источник: 13
Аккумулятор тепла
Однако следует также учитывать потери энергии (саморазряд), и это объясняет, почему датские ветряки, производящие тепло, обычно имели накопительный бак, вмещающий от десяти до двадцати тысяч литров воды. 13
Замедлители и механические тепловые насосы
Ретардеры и механические тепловые насосы имеют те же преимущества, что и машины Джоуля, в том смысле, что они намного меньше, легче и дешевле, чем электрические генераторы. Однако в этом случае для достижения оптимальной эффективности требуется редуктор.
Более крупные системы имеют те же рейтинги — комбинация механических ветряков и механических тепловых насосов является самым дешевым вариантом, — но они имеют до трех раз более низкие капитальные затраты из-за эффекта масштаба. Более крупные ветряные мельницы имеют более высокие коэффициенты мощности (16-40%), что приводит к еще большей экономии средств.
15
Ослепленные электричеством
15
Комментарии
, Международное энергетическое агентство (МЭА). ↩
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI. Publicat de Universitatea Tehnică «Georghe Asachi» din Iaşi Tomul LIX (LXIII), Fasc. 4 2013 ↩↩↩