+7(499) 136 06 90

+7(495) 704-31-86

[email protected]

Чередование фаз


Чередование фаз | Заметки электрика

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).

При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло короткое замыкание, при котором сработала защита сразу на двух вводных автоматических выключателях.

Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

 

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.

Он состоит из трех обмоток, расположенных на сердечниках, и алюминиевого диска.

Действие прибора аналогично принципу работы асинхронного двигателя.

Если все три обмотки включить в сеть трехфазного напряжения, то они образуют в пространстве вращающееся магнитное поле, которое приводит во вращение алюминиевый диск. Алюминиевый диск имеет фон черно-белого цвета. Направление магнитного поля и алюминиевого диска зависит исключительно от порядка чередования (следования) фаз питающего трехфазного напряжения.

Фазоуказатель ФУ-2 предназначен для включения в сеть трехфазного напряжения от 50 до 500 (В). Время его включения ограничивается временем 5 секунд. При нажатии на кнопку (она находится сбоку) диск начнет вращаться ту или иную сторону.

Рассмотрим работу фазоуказателя ФУ-2 более подробно.

 

Проверка чередования (следования) фаз на стенде

На моем испытательном стенде имеется источник трехфазного напряжения. Порядок чередования фаз мне неизвестен.

Проведем проверку чередования (следования) фаз с помощью фазоуказателя ФУ-2.

Подключаем зажимы А, В и С фазоуказателя ФУ-2 к выводам трехфазного напряжения на стенде.

Подаю напряжение на источник трехфазного напряжения порядка 80 (В).

Нажимаем на кнопку и смотрим куда начал вращаться диск прибора. Диск начал вращаться в обратную сторону — против стрелки. Это значит, что трехфазное напряжение на испытательном стенде имеет обратную последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: СВА, АСВ или ВАС.

Чтобы изменить обратную последовательность фаз на прямую, достаточно поменять местами две любые фазы. Меняю местами две крайние фазы (справа) на стенде и снова провожу измерение.

Теперь диск фазоуказателя начал вращаться в одну сторону со стрелкой. Это значит, что теперь трехфазное напряжение на испытательном стенде имеет прямую последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: АВС, ВСА или САВ.

Все вышеописанные действия Вы сможете посмотреть на видео:

 

Зачем необходимо проверять чередование фаз?

Чередование фаз необходимо проверять для правильного подключения трехфазных двигателей. При прямом подключении фаз они будут вращаться в одном направлении, а при обратном — в другом.

Также чередование фаз необходимо учитывать при подключении счетчиков электрической энергии. Особенно, это относится к счетчикам индукционного типа.

Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

Забыл упомянуть про реле контроля фаз типа ЕЛ-11, которое контролирует и срабатывает при нарушении чередования фаз.

Так в чем же была ошибка электромонтажников?

Внимание!!! С помощью фазоуказателя нельзя определить, где именно находится фаза А, В или С. Им определяется ТОЛЬКО последовательность фаз, т.е. направление вращающегося поля. Вот в этом и была ошибка электромонтажников, у которых на 1 и 2 секциях 400 (В) совпала последовательность фаз, а сами фазы по одноименности не совпали, поэтому при включении на параллельную работу трансформаторов случилось короткое замыкание, т.к. межсекционный автоматический выключатель замкнул разноименные фазы.

Во избежание подобных ошибок фазировку 1 и 2 секций 0,4 (кВ) необходимо было проводить с помощью поверенных указателей напряжения (УНН) или мультиметра, а не с помощью фазоуказателя, который показывает только последовательность фаз питающего напряжения:

  • прямое следование фаз — АВС, ВСА или САВ
  • обратное следование фаз — СВА, АСВ или ВАС

Дополнение: в прошлом году немного обновили «парк» приборов нашей ЭТЛ и теперь вместо ФУ-2 пользуемся указателем TKF-12.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Основные понятия и определения (фазировка)

Трехфазная система.

Под трехфазной системой э. д. с. (напряжений) понимают совокупность трех электрических цепей переменного тока одной частоты, э. д. с. которых не совпадают по фазе. На рис. 1,а приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в которых получается переменная э. д. с, помещены в пазы статора, смещенные по окружности на 120°. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных э. д. с. одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,б). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения э. д. с. Когда ось ротора I—I пересекает витки обмотки статора, в них наводится максимальная э.д. с. Но так как для трех обмоток статора это происходит в разные моменты времени, то


Рис 1 Получение трехфазной симметричной системы э. д. с.
а-синхронный генератор; б-график э.д.с.; в-векторная дивграмма э.д.с.; 1-статор; 2-обмотка статора; 3-ротор; 4-обмотка ротора

и максимумы наведенных э. д. с. не совпадают по фазе, т. е. их амплитуды Еа, Ев, Ес оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.

Фаза.
Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае э. д. с), называют фазовым углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся э. д. с. одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между фазами амплитуд. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения э. д. с. при переходе от отрицательных к положительным значениям. На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а). Это свидетельствует о том, что синусоида с началом в точке b отстает во времени от синусоиды с началом в точке а. Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на 2/3 Т или на 240° от начала координат (момента, когда t = 0).
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы именуют прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. В соответствии с Правилами устройства электроустановок (ПУЭ) шины фазы А окрашивают в желтый цвет, фазы В -в зеленый и фазы С -в красный. Поэтому фазы часто называют Ж, 3, К. Для распознания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Порядок следования фаз.

Порядок, в котором э. д. с. трех фаз непрерывно проходит через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы э. д. с. могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,а, то порядок следования фаз будет А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В,- это обратный порядок следования фаз.
Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание путаницы условимся применять термин «чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.
Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины ит. д.) расположены в пространстве, если обход «их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, согласно ГОСТ порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при их вертикальном расположении: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин горизонтально наиболее удаленная шина окрашивается в желтый цвет, а ближайшая — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза А, справа — фаза С, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы А, справа — фазы С, если смотреть из ОРУ на вводы трансформаторов.
Отступление от указанных выше требований порядка чередования окраски крайних шин РУ ПУЭ допускает в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов воздушных линий.

Совпадение фаз.

При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) зажимов на включающем аппарате и подачи на них напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух трехфазных цепей имеют одинаковые порядки следования фаз. При этом условии фазы одноименных напряжений могут совпадать, а порядок чередования обозначений зажимов у выключателя — нет (рис. 2,а) или, наоборот, при одном и том же порядке чередования обозначений зажимов физируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2,6). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30°, что характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к к. з.



Рис. 2. Варианты несовпадения (а, б) и совпадения (в) фаз двух частей установки.

Однако возможен вариант, когда совпадает и то, и другое (рис. 2, в). Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда одноименные напряжения фазируемых трехфазных цепей совпадают по фазе, а чередование обозначений у выключателя зажимов (или их расцветка) согласовано с соответствующими фазами напряжений и между собой.


Векторное изображение синусоидально изменяющихся э. д. с. (напряжений, токов).

Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами — направленными отрезками прямой линии (рис. 1,в). Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся э. д. с.) на вертикальную ось I—I, перемещаемую по оси абсцисс со скоростью, пропор-циональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом j (рис. 4). Отставание вектора Ев от вектора Еа показано направлением стрелки угла j (против направления вращения векторов).
Следует сказать, что понятие вектора з. д. с. (напряжения, тока и т. д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике. Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, э. д. с. трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.

Puc. 3. Получение синусоидального графика при вращении вектора.

Рис. 4. Изображение двух з. д. с. синусоидами и векторами при различных углах сдвига, а — j = 0°; б — j = 90°, в — j = 180°.


Основные схемы соединений трехфазных цепей.
Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.

При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, а), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными э.д. с. и обозначают Еа, Ев, Ес, или просто Еф. Электродвижущие силы между выводами фаз называют линейными Ел. Они получаются как разности векторов соответствующих, фазных э. д. с. генератора, например, Еа — Ев = Еав (рис. 5,6). Порядок индексов в обозначении линейных э. д. с. не произволен — индексы ставятся в порядке вычитания векторов: Ев — Ес = Евс; Ес — Еа = Еса. С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора э. д. с. отстающей фазы из э. д. с. опережающей. В результате векторы линейных э. д. с. всегда опережают уменьшаемые фазные векторы на 30° Значения линейных э. д. с. в корень из трех, или в 1,73 раза больше фазных, в чем легко убедиться измерением векторов на диаграмме.


Рис. 5. Соединение обмоток генератора в звезду (а) и векторная диаграмма э. д. с. (б).

Соединение обмоток генератора треугольником показано на рис. 6,а.

Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными э. д. с. промышленной частоты, сдвинутыми относительно друг друга на 1/3 Т, так как в каждый момент времени геометрическая сумма этих э. д. с. равна нулю (рис. 6,6).
Из рис. 6 следует, что при соединении в треугольник фазная э. д. с. равна линейной и совпадает с ней по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко.
Обмотки трансформаторов, так же как и у генераторов, соединяют в звезду и треугольник (схема зигзаг встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки низшего напряжений (НН) также соединяют в У или Д. 12
В отличие от генераторов у трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным.


Рис. 6. Соединение обмоток генератора в треугольник (а) и векторная диаграмма э. д. с. (б).

Как и чем определить порядок чередования фаз в трехфазной сети?

 

При подключении различного оборудования к электросети часто возникает проблема в том, что провода и обозначения фаз могут быть ошибочными, а маркировка фаз утерянной или стертой. 

Если подключить оборудование неправильно - возникнет риск серьезных аварий и поломок, поскольку неверный порядок последовательности фаз приводит к тому, что двигатели вращаются в обратную сторону. Чем это чревато на транспорте, на стройках или в крупном промышленном производстве объяснять не стоит.

Для определения последовательности фаз можно применять осциллограф, но это не совсем удобно и не всегда применимо к производственным условиям.

Существуют специальные приборы: индикаторы последовательности чередования фаз, которые бывают электромеханические, электронные и бесконтактные.

Данные приборы имеют множество названий: индикаторы фазовращения, указатели последовательности фаз, индикаторы очередности фаз, индикаторы порядка следования фаз и т.д.., однако суть от этого не изменяется. 

Электромеханические индикаторы

Это самые распространенные и простые приборы, которые уже давно применяются и отличаются простотой и наглядностью. Они представляют из себя небольшой трехфазный двигатель с вращающимся диском, по направлению вращения которого можно определить порядок чередования фаз. Самые известные приборы : ЭИ5001 или И517М.

 

 

Прибор следует подключить к 3-м фазам и кратковременно нажать на кнопку. Вращение диска покажет правильно ли определен порядок чередования фаз.

Есть одна тонкость - нажатие на кнопку должно быть кратковременным, достаточно 1-2 секунды, чтобы диск начал вращение. Если держать кнопку нажатой слишком долго, то
прибор может выйти из строя за счет перегрева.

Более современный электромеханический прибор - 8PK-ST850. 

 


Устроен по принципу предыдущего, однако снабжен штатным проводами, мягким чехлом и неоновыми индикаторами фаз. Если контакта с какой-либо фазой нет - то это будет сразу понятно по отсутствию свечения индикатора данной фазы.

К недостаткам таких приборов следует отнести относительно большие габариты и массу, а также наличие подвижных частей.
К достоинствам - высокая помехоустойчивость и практически нулевая вероятность ошибки измерений.

Электронные контактные индикаторы

UT261A - удобный малогабаритный прибор на ЖК индикаторах, позволяющий отслеживать наличие каждой фазы и порядок их чередования.

 

 

Прибор не требует внутреннего источника питания, т к питается исследуемым напряжением.

UT261B - электронный прибор , который показывает так же как и предыдущий наличие фаз неоновыми индикаторами и порядок чередования фаз светодиодами. Питание прибора - 9 вольт от батареи Крона.

 

 

Особенность прибора - не только определение порядка чередования фаз напряжения, но и порядка чередования обмоток двигателя. Это работает так: прибор подключается к отключенному от сети двигателю. Вал двигателя вращают вручную и при этом светодиоды покажут порядок чередования фаз обмоток - L (левый)  или R (правый).

К достоинствам приборов следует отнести простоту использования, малые габариты и массу, отсутствие подвижных частей и вследствие этого большую надежность.  

К недостаткам - более высокую чувствительность к помехам и искажениям в сети по сравнению с электромеханическими приборами. В случае очень сильных помех прибор может давать неопределенные показания, однако уровень помех или искажений должен быть очень большим.

Бесконтактные электронные индикаторы

Довольно новые приборы UT262A и UT262C, которые позволяют определить порядок чередования фаз без разрыва цепи и гальванического контакта с сетью.

 

 

Для измерений клипсы с датчиками тока крепятся на проводах и светодиодные индикаторы показывают направление вращения фаз.  Естественно, при этом, по проводам должен течь ток.

К достоинствам прибора относится простота и безопасность использования.

К недостаткам - слишком высокая чувствительность к электромагнитным помехам и нелинейным искажениям. В производственных условиях избежать такого рода помех сложно, т к в наше время к сети подключены частотные приводы, инверторы и т.д., использующие технологии ШИМ и синтеза частоты.

Однако, для первичных вводов приборы вполне подходят, то есть там, где уровень помех и несинусоидальности относительно невелик.

В кратком обзоре мы рассмотрели 3 основных типа индикаторов последовательности чередования фаз, которые поставляются ТОО Test instruments, являющегося официальным дистрибьютором заводов производителей.

Заказы на приборы принимаются на интернет портале Pribor.kz 
 

HydroMuseum – Чередование фаз

Чередование фаз – Простые способы фазировки кабеля

Простейшим способом отыскания в конце кабеля токоведущих жил, соответствующих определенным фазам его начала, является способ проверки («прозвонки») жил при помощи телефонных трубок, например при проверке силовых кабелей, прокладываемых между различными помещениями станций и подстанций. Схема присоединения телефонных трубок показана на рисунке 1.

В качестве одного из проводов для установления связи используют заземленные конструкции (заземленную металлическую оболочку кабеля), к которым подсоединяют телефонные трубки. Далее, с одной из сторон кабеля провод от батарейки соединяют с токоведущей жилой (допустим, фазой С).

Рис.1 Схема присоединения телефонных трубок при фазировке кабеля

С другой стороны кабеля вторым проводом от телефонной трубки поочередно касаются токоведущих жил, каждый раз подавая голосом сигнал в трубку. Найдя жилу, по которой будет получен отзыв проверяющего, ее помечают как фазу С и в том же порядке продолжают поиск других жил. Вместо обычных телефонных трубок целесообразно применение телефонных гарнитуров, пользование которыми освобождает руки проверяющих для работы.

Для проверки чередования фаз достаточно широко используют мегаомметр, схема включения которого показана на рисунке 2. Для этого поочередно заземляют жилы в начале кабеля, а в конце производят измерение сопротивления изоляции жил относительно земли.

Рис.2 Схема присоединения мегаомметра при фазировке кабеля

Заземленную жилу обнаруживают по показаниям мегаомметра, так как сопротивление ее изоляции на землю будет равно нулю, а двух других жил — десяткам и даже сотням мегаом.

При этом способе проверки трижды устанавливают и снимают заземления. Кроме того, персонал, находящийся у концов кабеля, должен иметь между собой связь, чтобы координировать свои действия. Все это относится к недостаткам такого способа проверки.

Более совершенным способом фазировки кабеля является способ измерений по схеме, приведенной на рисунке 3.

Одну из трех жил кабеля (назовем ее фазой А) жестко соединяют с заземленной оболочкой, другую жилу (фазу С) заземляют через сопротивление 8—10 МОм В качестве сопротивления обычно используют трубку с резисторами указателя УВНФ. Третью жилу (фазу В) не заземляют, она остается свободной. С другого конца кабеля мегаомметром измеряют сопротивление жил относительно земли.

Очевидно, что фазе А будет соответствовать жила, сопротивление которой на землю равно нулю, фазе С — жила, имеющая сопротивление на землю 8 — 10 МОм, и фазе В — жила с бесконечно большим сопротивлением.

Рис.3 Схема присоединения мегаомметра и дополнительного резистора при фазировке кабеля

Техника безопасности при производстве фазировки кабелей

По условиям безопасности при производстве фазировки кабелей фазировка производится только на отключенной со всех сторон кабельной линии. При этом должны быть приняты меры против подачи на кабель рабочего напряжения. Перед началом фазировки при помощи мегаомметра весь персонал, находящийся вблизи кабеля, предупреждается о недопустимости прикосновения к токоведущим жилам.

Соединительные провода от мегаомметра должны иметь усиленную изоляцию (например, провод типа ПВЛ). Присоединение их к токоведущим жилам производится после того, как кабель будет разряжен от емкостного тока. Для снятия остаточного заряда кабель заземляют на 2—3 мин.

Проверка чередования фаз силовых кабелей по расцветке изоляции жил

Токоведущие жилы силовых кабелей с изоляцией из пропитанной бумаги расцвечивают навитыми на их изоляцию лентами цветной бумаги. Одну из жил, как правило, опоясывают красной лентой, другую — синей, а изоляцию третьей специально не расцвечивают — она сохраняет цвет кабельной бумаги.

При изготовлении кабелей жилы скручивают между собой так, что на протяжении одного шага скрутки каждая жила меняет свое положение в площади сечения, делая один оборот вокруг оси кабеля. Рассматривая площади сечений с обоих концов кабеля, можно обнаружить, что по отношению к наблюдателю фазы в сечениях чередуются в разных направлениях. Эти особенности конструкции кабелей учитывают при фазировке и соединении жил.

Рис. 4. Чередования фаз в сечениях кабеля. Стрелками показаны направления обхода фаз.

Допустим, что необходимо произвести фазировку и соединение жил двух концов трехфазного кабеля. Фазировка в данном случае элементарно проста. Она заключается в том, что из шести жил выбирают пары, имеющие одинаковую расцветку. Эти жилы замечают и готовят к соединению. Для соединения необходимо, чтобы оси жил одинаковой расцветки совпадали, а направление чередования фаз в площади сечения одного конца кабеля было зеркальным отражением другого.

Рис. 5. Некоторые варианты чередования расцвеченных жил в сечениях двух кабелей: а — соединение жил одинакового цвета возможно; б — то же после поворота сечения на 180°; в — соединение трех жил по их цветам невозможно.

При укладке кабелей в траншею вероятность совпадения осей жил невелика. Чаще всего фазы одного цвет а оказываются повернутыми относительно друг друга на некоторый угол, значение которого может доходить до 180°.

Кабели с несовпадающими осями одинаково расцвеченных жил при монтаже (или ремонте) подкручивают вокруг оси, пока не будет зафиксировано точное совпадение осей жил. Однако сильное подкручивание не безопасно. Оно вызывает механические напряжения в защитных и изоляционных покровах кабелей и влечет за собой снижение надежности в работе.

Для того чтобы по цвету совпали все соединяемые между собой жилы, направления чередований фаз в сечениях кабелей должны быть противоположными. Это проверяется заранее, до укладки кабеля в траншею, если на его концах отсутствуют метки с указанием направления чередования фаз. Заметим, что у кабелей с чередованием фаз, направленным в одну сторону, по цвету совпадает только одна жила, а две другие не могут совпадать.

Преимущество способа соединения кабелей одинаково расцвеченными жилами состоит в том, что фазировка здесь не является самостоятельной операцией, она выполняется в ходе самих работ, а процесс прокладки, ремонта и эксплуатации кабелей приобретает более стройную систему и требует меньших трудозатрат.

Проверка чередования фаз силовых кабелей прибором ФК-80

Для фазировки на две жилы кабеля на питающем его конце накладываются два излучателя: на фазу А — излучатель непрерывного сигнала И1, на фазу В — излучатель прерывистого сигнала И2, фаза С остается свободной. Заземление с кабельной линии не снимается — оно не мешает проведению фазировки. На время фазировки или задолго до этого прибор ФК-80 включается в сеть 220 В. Излучатели наводят в жилах кабеля соответствующие ЭДС. На другом конце линии телефонные трубки подсоединяют одним проводом к заземлению (заземленной оболочке кабеля), а другим проводом поочередно касаются токоведущих жил кабеля.

Рис. 6. Применение прибора ФК-80 при фазировке кабеля

Принадлежность жилы кабеля той или иной фазе определяется по характеру звука в телефонных трубках. Если будет услышан непрерывный сигнал — трубки подключены к фазе А, прерывистый — к фазе В и отсутствие звука укажет, что трубки подключены к фазе С. Наводимая в жилах кабеля ЭДС звуковой частоты (ее значение не превышает 5 В) не является помехой для выполнения ремонтных работ на кабельной линии.

возможности, о которых важно знать / НПП «Динамика»

Для правильного подключения трехфазных двигателей, а также счетчиков электрической энергии необходимо проверять чередование фаз. Можно ли с помощью РЕТОМЕТР-М2 выполнить данную проверку?

С помощью трехфазного прибора РЕТОМЕТР-М2 можно легко определить чередование фаз, измерив значения фазных напряжений или их симметричных составляющих. Для этого в приборе имеются соответствующие режимы измерений.

Чтобы выполнить проверку, достаточно подключить прибор с помощью трех проводов к соответствующим выводам проверяемых фаз (рис. 1). Стоит отметить, что это единственный режим, когда для измерения трехфазного сигнала достаточно всего три провода, в остальных используются четыре или шесть.

Чтобы удостовериться в правильности подключения, необходимо в трехфазном режиме проверить наличие напряжения на каждом входе (рис. 2). При некорректных результатах рекомендуется проверить схему соединения либо дополнительно подключить нулевой провод.

Далее в режиме измерения последовательностей определить порядок чередования фаз. При прямом чередовании наибольшее значение напряжения имеет прямая последовательность, например, на рисунке 3 Uп=57.73В. Если чередование обратное, то максимальное значение достигает напряжение Uо. Напряжение Uн не участвует в определении чередования. Наличие трех напряжений Uп, Uo и Uн свидетельствует о некорректном подключении.

Рис. 1. Проверка чередования фаз Рис. 2. Проверка правильности подключения Рис. 3. Вычисление значений симметричных составляющих
Как с помощью РЕТОМЕТР-М2 выполнить проверку фазировки шин двух секций 0,4 кВ?

В приборе все измерительные каналы напряжения между собой гальванически развязаны, поэтому такая проверка выполняется быстро и безопасно.

Вход U1 подключается к фазе «А» либо к линейному напряжению «AB» первой секции шин, а вход U3 – к фазе «А» либо к линейному напряжению «АВ» второй секции шин (рис. 4). Если система фазирована правильно, то угол между напряжениями будет равен 0 (рис. 5), если концы перевернуты – 180 градусов. В случае, когда фазы в шинах перепутаны, угол равен 120 градусам (С или L).

После проверки фазы «А» необходимо проверить другие фазы аналогичным образом.

Рис. 4. Проверка фазировки шин двух секций Рис. 5. Измерение напряжения в двух каналах и вычисление фазы между ними
Как выполнить проверку вторичной цепи трансформатора тока?

Измерение сопротивления нагрузки во вторичной цепи трансформатора тока необходимо выполнять, подав на него первичный ток от постороннего источника, либо когда трансформатор работает в штатном режиме.

Вход вольтамперфазометра U1 необходимо подключить к выводам вторичной обмотки трансформатора, а токовыми клещами I1 охватить любой отходящий провод (рис. 6). Далее в меню установить однофазный режим и выбрать расширенное отображение данных.

По измеренным значениям тока и напряжения вычисляются полное, активное и реактивное сопротивления (рис. 7).

Рис. 6. Проверка вторичной цепи трансформатора тока Рис. 7. Измерение параметров одной фазы
Как определить несимметрию трехфазной системы напряжений в цепи 0,4 кВ?

РЕТОМЕТР-М2 имеет широкий диапазон измерения напряжения, до 750 В на фазу, благодаря чему прибор можно непосредственно использовать для измерений в сетях 0,4 кВ.

Показателями несимметрии трехфазной системы напряжений являются коэффициенты несимметрии по обратной (Ко) и нулевой (Кн) последовательности, которые рассчитываются как отношение действующего значения напряжения соответ¬ственно обратной и нулевой последовательности к действующему значению напряжения прямой последовательности.

РЕТОМЕТР-М2 автоматически вычисляет значения этих коэффициентов в режиме измерения симметричных составляющих (рис. 9).

При измерении коэффициентов несимметрии напряжений используется только четырехпроводная схема подключения (рис. 8).

Рис. 8. Определение несимметрии напряжений в цепи 0,4 кВ Рис. 9. Измерение коэффициентов Ко=14% и Кн=5%
Можно ли с помощью РЕТОМЕТР-М2 проводить измерения общей мощности потребления в многоквартирном доме?

Да, можно, но при условии, что в электрощите используются понижающие трансформаторы тока (рис. 10). Для измерения потребляемой мощности необходимо выбрать трехфазный режим работы РЕТОМЕТР-М2 и переключить его в режим измерения трехфазной мощности, где вычисляется активная, реактивная, полная мощность каждой фазы и коэффициент мощности. Общая активная мощность ΣP определяется как суммарная мощность трех фаз (рис. 11). Полученное значение необходимо умножить на коэффициент трансформации ТТ.

Рис. 10. Измерение общей мощности потребления Рис. 11. Снятие полной векторной диаграммы трехфазной цепи
Зачем в РЕТОМЕТР-М2 добавлена возможность проведения измерений на различных гармониках?

В связи с широким распространением устройств, использующих в своей схеме тиристоры, генерирующие в сеть гармоники, в электросетях появилось большое количество возмущений и искажений, приводящих к сбоям производственного оборудования и к неправильному учету потребленной или произведенной энергии. Основными источниками гармоник являются частотные приводы и устройства плавного пуска двигателя, дуговая сварка, трансформаторы и т.д.

Гармоники, генерируемые источниками, не остаются в данной системе, а проявляются в соседних связанных электросетях и могут приводить к катастрофическим последствиям, вызывая перегрев и выход из строя силовых трансформаторов, увеличение тока или перегрузку корректирующих конденсаторов, шум и сбои в работе систем контроля, перегрузку вращающихся устройств, ошибки срабатывания автоматических выключателей и ошибки в коммуникационном оборудовании, большой ток в нейтрали, изменение напряжения в фазах и т.д.

С целью предотвращения роста уровня нелинейных искажений в сети, поглощения (тепловыделения) гармоник, а также для рационального использования электроэнергии, необходимо использовать специальные измерительные приборы, имеющие фильтры гармоник.

Любую периодическую кривую тока или напряжения можно разложить на основную синусоиду (50 Гц) и сумму определенного количества частот кратных 50 Гц. Наибольшее значение имеют нечетные гармоники, так уровни влияния 3, 5, 7, 8, 9 в сумме могут превышать 10% от 1-й гармоники. Другие гармоники имеют гораздо меньшее влияние.

Помимо измерений параметров сигнала на основной частоте, обновленный РЕТОМЕТР-М2 проводит полный комплекс измерений на 3 (150 Гц), 5 (250 Гц), 7 (350 Гц), 9-й (450 Гц) гармониках (рис. 12). С включенным фильтром на выбранной частоте прибор измеряет действующее значение тока, напряжения, фазы, вычисляет параметры мощности и сопротивления. Следовательно, с помощью РЕТОМЕТР-М2 можно достаточно легко обнаружить источники помех, измерить уровень вносимых искажений без применения дорогостоящих устройств анализа сети.

Рис. 12. Выбор метода измерения: среднеквадратичный (RMS) либо с использованием фильтра гармоник

Таким образом, новые возможности РЕТОМЕТР-М2 позволили специалистам расширить круг задач по проведению различных измерений.

Зайцев Б.С. НПП «Динамика» г. Чебоксары ноябрь 2015

KEW 8035 Бесконтактный тестер чередования фаз ELMER Краков

Настройки файлов cookie

Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.

Требуется для работы страницы

Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому вы не можете их отключить.

Функциональный

Эти файлы позволяют использовать другие функции сайта (кроме необходимых для его работы).Включив их, вы получите доступ ко всем функциям веб-сайта.

Аналитический

Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям Пользователей.

Поставщики аналитического программного обеспечения

Эти файлы используются поставщиком программного обеспечения, под которым работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Целью сбора этих файлов является выполнение анализа, который будет способствовать разработке программного обеспечения. Вы можете прочитать больше об этом в политике использования файлов cookie Shoper.

Маркетинг

Благодаря этим файлам мы можем проводить маркетинговые мероприятия.

.

Тестер чередования фаз Beha Amprobe PRM-6-EUR 4633222 CAT IV 600 В fokus.sklep.pl

Настройки файлов cookie

Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.

Требуется для работы страницы

Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому вы не можете их отключить.

Функциональный

Эти файлы позволяют использовать другие функции сайта (кроме необходимых для его работы).Включив их, вы получите доступ ко всем функциям веб-сайта.

Аналитический

Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям Пользователей.

Поставщики аналитического программного обеспечения

Эти файлы используются поставщиком программного обеспечения, под которым работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Целью сбора этих файлов является выполнение анализа, который будет способствовать разработке программного обеспечения. Вы можете прочитать больше об этом в политике использования файлов cookie Shoper.

Маркетинг

Благодаря этим файлам мы можем проводить маркетинговые мероприятия.

.

Приборы для проверки чередования фаз, последовательное или обратное чередование фаз

Приборы для проверки чередования фаз – описание категории

Категория Приборы для проверки чередования фаз – одна из 14 категорий в разделе Измерители безопасности для электроустановок. В этой категории нет дочерних ветвей.

В промышленных электроустановках в качестве потребителей часто используют устройства с питанием от трехфазных электродвигателей. Правильная последовательность фаз, питающих двигатели, имеет решающее значение для их правильной работы.Неправильная последовательность фаз обычно приводит к немедленному серьезному повреждению приводных машин. Использование тестера чередования фаз позволяет избежать поломок, затраты на которые во много раз превышают стоимость самого тестера.

Измерители чередования фаз - примечания к дополнительным измерительным функциям

Базовые модели указателей напряжения индицируют наличие напряжения в отдельных фазах и направление вращения с помощью светодиодов. Более обширные модели индикаторов напряжения были оснащены более передовыми технологиями.Важнейшим из них является возможность проведения бесконтактного фазового спинового теста. Преимущество его в том, что нет необходимости в гальванической связи – испытание можно проводить в действующей установке.

Фазовые спинометры - информация о производителях

В данную категорию входят средства измерений следующих фирм:
- Brymen
- EnergyLab
- Kyoritsu
- Megger
- Sonel
и других производителей.

.

Вольтметр, тестер фаз 12-690В | Оборудование Magnum-Pro для гастрономии и промышленности

Настройки файлов cookie

Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.

Требуется для работы страницы

Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому вы не можете их отключить.

Функциональный

Эти файлы позволяют использовать другие функции сайта (кроме необходимых для его работы).Включив их, вы получите доступ ко всем функциям веб-сайта.

Аналитический

Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям Пользователей.

Поставщики аналитического программного обеспечения

Эти файлы используются поставщиком программного обеспечения, под которым работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Целью сбора этих файлов является выполнение анализа, который будет способствовать разработке программного обеспечения. Вы можете прочитать больше об этом в политике использования файлов cookie Shoper.

Маркетинг

Благодаря этим файлам мы можем проводить маркетинговые мероприятия.

.

Что такое реле контроля напряжения и как оно работает? • iAutomatyka.pl

Реле, как один из самых популярных компонентов автоматизации, можно найти буквально повсюду. Возможно, по этой причине они стали чем-то настолько очевидным, что почти незаметно. Между тем, это очень интересные устройства, и «у реле не одно имя». Помимо традиционных электромагнитных реле, существует множество различных типов устройств этого типа.

Одно из них реле контроля, действует как своего рода сторож.Они используются практически во всех типах устройств. Их можно найти в распределительных устройствах высокого (HN) и среднего (MV) напряжения. В качестве примеров могу привести реле напряжения-времени РЭТ-430А, используемое в системах автоматики защиты электропитания (показано на фото 1) и реле блокировки включения РВ, используемое в распределительных устройствах среднего напряжения для предотвращения заземления ячейки под напряжением (показано на фото 2) .

]]>
Фото 1.РЭТ-430А
Рис. 2. Реле блокировки соединения

Наибольшее применение реле контроля находится в низковольтных (НН) распределительных устройствах и устройствах управления. Есть много производителей этого типа оборудования, которые предлагают различные решения.

В этой статье я опишу работу реле контроля на базе реле серии Finder 70. Недавно имел удовольствие немного поиграться с одним из представителей этой серии, а именно реле 70.31.8.400.2022 (см. фото 3). В серию 70 также входят модели, контролирующие однофазное напряжение, и реле, контролирующие трехфазные сети для реагирования на асимметрию сети. Есть из чего выбрать.

Рис. 3. Реле серии 70.31

Представленное реле осуществляет контроль трехфазного напряжения. Имеет несколько режимов работы:

  • Пониженное напряжение памяти или отсутствие памяти ошибок,
  • перенапряжение с памятью ошибок или без нее,
  • в диапазоне (пониженное и повышенное напряжение одновременно) с памятью ошибок или без нее,

Независимо от выбранного режима работы также управляет:

  • выпадение фазы,
  • чередование фаз.

Выбор режимов работы и диапазона допустимых напряжений производится с помощью переключателей и регуляторов, расположенных на передней панели реле (фото 4).

Рис. 4. Передняя панель 70.31

Переключатель «Функции» выбирает режим работы:

  • ОВ - перенапряжение,
  • OVm - перенапряжение с памятью,
  • УФ - пониженное напряжение,
  • УВм - пониженное напряжение с памятью,
  • Вт - в диапазоне (ОВ ÷ УФ),
  • Вт - в диапазоне (ОВ ÷ УФ) с памятью,

Регуляторы UMax и UMin используются для установки пороговых значений для расцепителей максимального и минимального напряжения.С регулятором задержки. расколоть можно задать время, по истечении которого реле отключит систему в случае превышения предельных параметров значения напряжения (без задержки реагирует на обрыв фазы или изменение чередования фаз). Такая задержка может быть полезна при тяжелых пусках машины, когда напряжение в сети может кратковременно пропасть (реле не прерывает пуск).

Пришло время проверить реле. Для этого использовалась схема, показанная на фото ниже (фото 5).

Рис. 5. Тестовая схема.

Система, показанная на рисунке, кроме тестируемого реле, содержит:

  • Контакторная система с переключателем для изменения направления чередования фаз,
  • Защита типа "Es" с тремя отдельными полюсами для имитации обрыва фазы,
  • сигнальная лампочка (зеленая лампочка - реле контроля диагностирует сеть как исправную, красная - авария в сети),
  • индикатор направления вращения фазы.

Первая ситуация - сеть работает исправно: работают 3 фазы с чередованием фаз вправо (фото 6). В таком рабочем состоянии реле горит зеленым цветом.

Рис. 6. Корректная работа сети.

Другая ситуация - изменение направления вращения (фазы 2 и 3 перепутаны местами, рисунок 7). В этой ситуации на реле мигает желтый индикатор.

Рис. 7. Измененная последовательность фаз.

Другой случай - потеря одной из фаз.Эта ситуация представлена ​​на рисунках 8, 9 и 10. Обозначается миганием желтого диода на реле.

Рис. 8. Потеря фазы L1.

Рис. 9. Потеря фазы L2.

Рис. 10. Потеря фазы L3.

Другой тип дефекта — превышение предела напряжения (рис. 11). Слишком низкое или слишком высокое напряжение сети сигнализируется красным диодом на реле.

Рис. 11. Слишком высокое напряжение в сети.

На фото ниже (фото 12) показано, как реле контроля сигнализирует о неисправностях в питающей сети.

90 130

Рис. 12. Сигнализация неисправности сети с помощью реле.

Описанное выше реле наверняка справится с задачей контроля параметров сети, в которой работают трехфазные автоматы. Реле, контролирующие напряжение питания в трехфазных сетях, являются крайне важным элементом любой установки.Особенно в установках, питающих трехфазные двигатели. Выгоды от использования данного типа аппаратов несравненно больше, чем цена покупки. Сигналы от реле, информирующие о сбоях в сети, могут использоваться, например, для остановки производственной линии или оповещения бригады.

.

Тестер напряжения UNI-T UT15c -LOMBARD PLUS- Nowa Sól

  • Предложение от компании
  • Состояние б/у

Привет ! Предметом продажи является: Тестер чередования фаз UNI-T UT15c метр Тестер используется 100% рабочий Универсальный измеритель переменного/постоянного напряжения с ЖК-дисплеем и светодиодным индикатором.С тестом на вращение FAZ Измеритель УТ-15С позволяет измерять постоянное постоянное и переменное переменное напряжение в диапазоне от 6 до 690В с автоматическим изменением диапазона. Он оснащен двумя видами информации о значении измеряемого напряжения: светодиодным и жидкокристаллическим дисплеем. Для постоянного напряжения дополнительно информирует о поляризации напряжения. Помимо измерения напряжения мультиметром, можно проверить целостность цепи и выполнить проверку чередования фаз в трехфазных цепях. Характеристики Автоматическое изменение диапазона Измерение переменного напряжения переменного тока от 6В до 690В Измерение напряжения постоянного тока от 6 В до 690 В Диапазон частот для переменного тока 0-400 Гц Автоматическое включение при напряжении <12 В переменного/постоянного тока Проверка непрерывности от 0 до 400 кОм Проверка чередования фаз от 100 до 690В для частоты 45-65Гц Акустический сигнал при измерении переменного/постоянного напряжения Разрешение светодиода 12.24,50, 120, 230, 400, 690 В Обнаружение поляризации во всем диапазоне измерения Размеры 255 х 70 х 28 мм Размеры ЖК-дисплея 23 х 12 мм Включает: измерять ИНФОРМАЦИЯ: ПО ЗАПРОСУ КЛИЕНТА ПРИКЛАДЫВАЮ К ДОКУМЕНТУ КВИТАНЦИЮ ИЛИ СЧЕТ-ФАКТУРУ НА НАБЛЮДЕНИЕ НДФЛ. ТЕЛ: *** - *** - *** Плюс Ломбард 67-100 Нова Соль ул. Площадь Освобождения 15 Отправляем товар после предоплаты (15 злотых).(DPD).Наложенный платеж возможен, но только после оплаты 17 злотых за отправку - остальное при получении. При получении посылки с заказанным Товаром проверьте посылку в присутствии курьера и в случае повреждения: 1.Механические повреждения содержимого посылки. 2. Неполная поставка. 3. Несоответствие содержимого посылки предмету договора. Вместе с курьером составить акт о повреждении.

.

Чередование фаз - многофазные цепи переменного тока

Чередование фаз

Глава 10 - Цепи переменного тока

Давайте взглянем на заранее выложенную конструкцию трехфазного генератора (рисунок ниже) и посмотрим, что происходит при вращении магнита.

Трехфазный генератор

Сдвиг фазового угла на 120 на является функцией фактического сдвига угла поворота трех пар витков (см. рисунок ниже). Если магнит вращается по часовой стрелке, обмотка 3 будет генерировать мгновенное пиковое напряжение точно 120 на (обороты вала генератора) после обмотки 2, которое достигнет пика при 120o после обмотки 1.Магнит проходит через каждую пару полюсов в разных положениях во вращательное движение вала. Место, где мы решили разместить обмотки, будет определять величину фазового сдвига между осциллограммами переменного напряжения. Если мы сделаем обмотку 1, наш «опорный» источник напряжения для угла сдвига фаз (0 на ), то обмотка 2 будет иметь угол сдвига фаз -120 на (отставание 120 на или управление на 240 на ) и обмотку 3 на угол -240 на (или 120 на с опережением).

Эта последовательность фазовых сдвигов имеет определенную последовательность. Чтобы повернуть вал по часовой стрелке, выполните последовательность 1-2-3 (сначала наматывается пик 1, наматывается 2, затем наматывается 3). Эта последовательность повторяется до тех пор, пока вращается вал генератора. (перечислены ниже)

Последовательность фаз правого вращения: 1-2-3.

Однако, если мы реверсируем вращение вала генератора (поворачиваем его против часовой стрелки), магнит будет проходить через пары полюсов в обратном порядке.Вместо 1-2-3 у нас будет 3-2-1. Теперь 2-кратная кривая будет опережать 120 на 1 на вместо отставания 3 будет на 120 на более чем на 2. (Рисунок ниже)

Последовательность фаз вращения против часовой стрелки: 3-2-1.

Порядок чередования волн напряжения в многофазной системе называется чередованием фаз или чередованием фаз. Если мы используем многофазный источник напряжения для управления резистивными нагрузками, чередование фаз не будет иметь никакого значения.Независимо от 1-2-3 или 3-2-1 напряжение и ток будут одинаковыми. Как мы вскоре увидим, у трехфазного питания есть определенные области применения, которые зависят от того, чередуются ли фазы в ту или иную сторону. Поскольку вольтметры и амперметры бесполезны, чтобы определить, каково чередование фаз работающей энергосистемы, нам нужен другой прибор, способный выполнять эту работу.

В одном оригинальном макете схемы используется конденсатор для введения фазового сдвига между напряжением и током, который затем используется для обнаружения последовательностей для сравнения яркости двух индикаторных ламп на рисунке ниже.

Детектор чередования фаз сравнивает яркость двух ламп.

Две лампы имеют одинаковую силу нити накала и мощность. Конденсатор рассчитан на то, чтобы обеспечить примерно такое же реактивное сопротивление на частоте системы, как и сопротивление каждой лампы. Если бы конденсатор был заменен резистором с таким же значением, как сопротивление лампы, две лампы светились бы с одинаковой яркостью, и цепь была бы сбалансирована. Однако конденсатор вносит фазовый сдвиг между напряжением и током в третьем плече цепи, равный 90 на .Этот фазовый сдвиг больше 0, , но меньше 120 на , наклоняет значения напряжения и тока обеих ламп в соответствии с их фазовыми сдвигами по отношению к фазе 3. Следующий анализ SPICE показывает, что происходит: (рис. ниже), " последовательность детектора чередования фаз = v1-v2-v3 "

Схема SPICE для фазового детектора.
 детектор чередования фаз - последовательность = v1-v2-v3 v1 1 0 ac 120 0 sin v2 2 0 ac 120 120 sin v3 3 0 ac 120 240 sin r1 1 4 2650 r2 2 4 2650 c1 3 4 1u.ac lin 1 60 60 .print ac v (1, 4) v (2, 4) v (3, 4) .end freq v (1, 4) v (2, 4) v (3, 4) 6.000E + 01 4, 810Е + 01 1, 795Е + 02 1, 610Е + 02 

В результате фазового сдвига от конденсатора напряжение между лампой фазы 1 (между узлами 1 и 4) падает до 48,1 В, а напряжение между лампой фазы 2 (между узлами 2 и 4) увеличивается до 179,5 В. , образуя первую лампу приглушенной, а другую лампу яркой. Обратное верно, если последовательность фаз обратная: "последовательность обнаружения чередования фаз = v3-v2-v1"

 детектор чередования фаз - последовательность = v3-v2-v1 v1 1 0 ac 120 240 sin v2 2 0 ac 120 120 sin v3 3 0 ac 120 0 sin r1 1 4 2650 r2 2 4 2650 c1 3 4 1u.ac lin 1 60 60 .print ac v (1, 4) v (2, 4) v (3, 4) .end freq v (1, 4) v (2, 4) v (3, 4) 6.000E + 01 1, 795Е + 02 4, 810Е + 01 1, 610Е + 02 

Здесь ("последовательность детектора чередования фаз = v3-v2-v1") первая лампа получает 179,5 вольт, а вторая только 48,1 вольт.

Мы исследовали, как возникает чередование фаз (порядок, в котором пары полюсов проходят через вращающийся магнит генератора переменного тока) и как его можно изменить, реверсивное вращение вала генератора переменного тока.Однако изменение направления вращения вала генератора переменного тока, как правило, не является опцией конечного пользователя, предоставляемой общенациональной сетью («генератор переменного тока» - это фактически объединенная сумма всех генераторов переменного тока на всех электростанциях). Есть гораздо более простой способ изменить последовательность фаз, чем вращение генератора: просто замените любые два из трех «горячих» проводов, которые идут на трехфазную нагрузку.

Этот трюк имеет больше смысла, если вы посмотрите на следующую фазу трехфазного источника напряжения:

 Вращение 1-2-3: 1-2-3-1-2-3-1-2-3-1-2-3-1-2-3.. . Вращение 3-2-1: 3-2-1-3-2-1-3-2-1-3-2-1-3-2-1. . . 

То, что обычно называют чередованием фаз "1-2-3", можно также назвать "2-3-1" или "3-1-2" при движении слева направо в приведенной выше последовательности. Точно так же противоположное вращение (3-2-1) можно было бы так же легко назвать «2-1-3» или «1-3-2».

Начиная с чередования фаз 3-2-1, мы можем попробовать все возможности одновременного переключения любых двух проводов и посмотреть, что произойдет с результирующей последовательностью на рисунке ниже.

Все возможности для преобразования любых двух проводов.

Какую бы пару "горячих" проводов из трех мы ни выбрали поменять местами, чередование фаз заканчивается в обратном порядке (1-2-3 меняется на 2-1-3, 1-3-2 или 3-2 - 1, все эквивалентно).

  • ВИД:
  • Чередование фаз или последовательность фаз — это последовательность, в которой формы сигналов напряжения многофазного источника переменного тока достигают своих соответствующих пиков. В случае трехфазной системы возможны только две последовательности фаз: 1-2-3 и 3-2-1, соответствующие двум возможным направлениям вращения генератора переменного тока.
  • Чередование фаз не влияет на активные нагрузки, но влияет на несбалансированные реактивные нагрузки, как показано в работе схемы детектора чередования фаз.
  • Чередование фаз можно изменить, поменяв местами любые два из трех «горячих» проводников, несущих трехфазное питание, на трехфазную нагрузку.
.

Смотрите также