+7(499) 136 06 90

+7(495) 704-31-86

[email protected]

Как определить теплопроводность


Методы определения теплопроводности

Теплопроводность — важнейшая теплофизическая характеристика материалов. Её необходимо учитывать при конструировании нагревательных устройств, выборе толщины защитных покрытий, учёте тепловых потерь. Если под рукой или в наличии нет соответствующего справочника, а состав материала точно не известен, его теплопроводность необходимо вычислить или измерить экспериментально.

Составляющие теплопроводности материалов

Теплопроводность характеризует процесс теплопереноса в однородном теле с определёнными габаритными размерами. Поэтому исходными параметрами для измерения служат:

  1. Площадь в направлении, перпендикулярном направлению теплового потока.
  2. Время, в течение которого происходит перенос тепловой энергии.
  3. Температурный перепад между отдельными, наиболее удалёнными друг от друга частями детали или исследуемого образца.
  4. Мощность теплового источника.

Для соблюдения максимальной точности результатов требуется создать стационарные (установившиеся во времени) условия теплопередачи. В этом случае фактором времени можно пренебречь.

Измерители теплопроводности на нашем сайте.

Определить теплопроводность можно двумя способами — абсолютным и относительным.

Абсолютный метод оценки теплопроводности

В данном случае определяется непосредственное значение теплового потока, который направляется на исследуемый образец. Чаще всего образец принимается стержневым или пластинчатым, хотя в некоторых случаях (например, при определении теплопроводности коаксиально размещённых элементов) он может иметь вид полого цилиндра. Недостаток пластинчатых образцов — необходимость в строгой плоскопараллельности противоположных поверхностей.

Поэтому для металлов, характеризующихся высокой теплопроводностью, чаще принимают образец в форме стержня.

Суть замеров состоит в следующем. На противоположных поверхностях поддерживаются постоянные температуры, возникающие от источника тепла, который расположен строго перпендикулярно к одной из поверхностей образца.

В этом случае искомый параметр теплопроводности λ составит
 λ=(Q*d)/F(T2-T1), Вт/м∙К, где:
Q — мощность теплового потока;
d — толщина образца;
F — площадь образца, на которую воздействует тепловой поток;
Т1 и Т2 — температуры на поверхностях образца.

Поскольку мощность теплового потока для электронагревателей может быть выражена через их мощность UI, а для измерения температуры могут быть использованы подключённые к образцу термодатчики, то вычислить показатель теплопроводности λ не составит особых трудностей.

Для того, чтобы исключить непроизводительные потери тепла, и повысить точность метода, узел образца и нагревателя следует поместить в эффективный теплоизолирующий объём, например, в сосуд Дьюара.

Относительный метод определения теплопроводности

Исключить из рассмотрения фактор мощности теплового потока можно, если использовать один из способов сравнительной оценки. С этой целью между стержнем, теплопроводность которого требуется определить, и источником тепла помещают эталонный образец, теплопроводность материала которого λ3 известна. Для исключения погрешностей измерения образцы плотно прижимаются друг к другу. Противоположный конец измеряемого образца погружается в охлаждающую ванну, после чего к обоим стержням подключаются по две термопары.

Далее включают нагреватель, и по достижении стационарного состояния, измеряют разницу температур между термопарами испытуемого образца и образца-эталона.

Теплопроводность вычисляется из выражения
λ=λ3(d(T13-T23)/d3(T1-T2)), где:
d — расстояние между термопарами в исследуемом образце;
d3 — расстояние между термопарами в образце-эталоне;
T13 и T23 — показания термопар, установленных в образце-эталоне;
Т1 и Т2 — показания термопар, установленных в исследуемом образце.

Теплопроводность можно определить и по известной электропроводности γ материала образца. Для этого в качестве испытуемого образца принимают проводник из проволоки, на концах которого любым способом поддерживается постоянная температура. Через проводник пропускается постоянный электрический ток силой I, причём клеммный контакт должен приближаться к идеальному.

По достижении стационарного теплового состояния температурный максимум Tmax будет располагаться посредине образца, с минимальными значениями Т1 и Т2 на его торцах. Измерив разность потенциалов U между крайними точками образца, значение теплопроводности можно установить из зависимости 

Точность оценки теплопроводности возрастает с возрастанием длины испытуемого образца, а также с увеличением силы тока, который пропускается через него.

Относительные методы измерения теплопроводности точнее абсолютных, и более удобны в практическом применении, однако требуют существенных затрат времени на выполнение замеров. Это связано с длительностью установления стационарного теплового состояния в образце, теплопроводность которого определяется.

Все публикации
Архив по годам: 2015; 2016;

Теплопроводность - это... Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов - у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Теплопроводность - это... Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов - у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Теплопроводность - это... Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов - у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Теплопроводность - это... Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов - у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Что это такое и как рассчитать коэффициент теплопередачи?

Теплоизоляция перегородок внешние факторы влияют на затраты на отопление каждого здания. Поэтому коэффициент теплопередачи очень важный параметр который нам нужен учитывать при строительстве жилищных объектов. Но какой он на самом деле есть и как рассчитать? Ниже мы ответим на самые распространенные задал вопросы.

Если вы планируете построить дом, воспользоваться услугой Поиск подрядчика , доступной на сайте Строительные калькуляторы.Благодаря ей, заполнив короткую форму, вы получите доступ к предложениям проверенных профессионалов, сотрудничающих с нами из ваш район.

Что такое коэффициент проникновения теплый?

Коэффициент теплопередача является наиболее важным параметром, используемым для определения изоляции теплоизоляция здания. Выразим его символом U. Говоря упрощенно, коэффициент Теплопередача определяет, сколько тепловой энергии может проникнуть внутрь. через перегородку.Чем ниже значение U, тем меньше потери тепла i снижение счетов за отопление дома. Для расчета коэффициента проницаемости тепла (выражается в Вт/м 2 К), учитывается толщина перегородки и все его слои и тип используемого материала. В ходе расчетов Коэффициент теплопередачи, так называемые тепловые мосты, чаще всего не учитываются. Их присутствие снижает теплоизоляцию в перегородке и вызывает большие потери энергии нагрев, поэтому кроме расчета коэффициента теплоотдачи многое важно правильно сделать герметичные камеры и системы теплоизоляция.При планировании этих и других строительных работ вам пригодится получить калькулятор стоимости строительства , спасибо Вы можете легко оценить свои инвестиционные расходы.

Расчет коэффициента диффузии тепло

Значение кофактора Рассчитаем U по упрощенной формуле. Расчет коэффициента мы можем сделать теплопередачу сами. Для этого будет полезно калькулятор и лист для записи результатов.

Первый этап наших расчетов заключается в определении термического сопротивления. Коэффициент сопротивления теплота выражается символом R и рассчитывается по формуле:

R = d/λ

Где:

  • Р - сопротивление термальный.
  • д - толщина стены, выраженные в метрах.
  • λ - теплопроводность, выраженная в Вт/мК.

До финала расчетов, следует еще добавить коэффициент теплоотдачи со стороны внешний (Rsi) и коэффициент теплоотдачи с внутренней стороны (Рсе).

Дополнение коэффициент R+Rsi+Rse определяет общее значение термического сопротивления.

Из вышеперечисленного формула, учитывающая коэффициент теплоотдачи λ, показывает, что расчет коэффициент теплопередачи тесно связан с проводимостью материал. Коэффициент лямбда-теплопроводности зависит от типа используемый материал. Мы можем рассчитать коэффициент теплопроводности самостоятельно, но онлайн-калькулятор здесь будет большим подспорьем.Коэффициент лямбда-теплопроводности также должен быть указан в техническая спецификация строительных материалов. Чем меньше его будет значение, тем ниже коэффициент теплопередачи наружных стен.

Уже знаю общий коэффициент теплопроводности, включая наружные стены, мы можем использовать другую формулу, чтобы помочь определить наше соотношение теплопередача:

U = d / R1

Где:

  • г - средства толщина стенки, выраженная в метрах.
  • R1 - средства общее тепловое сопротивление перегородки.

Результат расчеты нужно только сравнить с допустимым пределом коэффициента теплопроводность для многослойных стен.

Если наши перегородка состоит из нескольких слоев с разными свойствами, нам нужно рассчитать U-фактор для каждого из них.

Как видим, расчет коэффициента для всех разделов может быть довольно сложным. К счастью, для расчетов мы можем использовать онлайн-калькулятор, который упростит действия.Еще одним облегчением может быть использование готовых моделей. строительство. Производители приводят коэффициент теплопередачи w технические параметры материала. Благодаря этому мы не должны быть одни произвести все расчеты. Тем не менее, это оказывается самым большим удобством онлайн-калькулятор, который рассчитает для нас параметры указанных перегородок внешний.

Что это такое и как рассчитать коэффициент теплопередачи?

Технические условия и значение U

Коэффициент теплоотдача камер во вновь строящемся здании не должна превышать определенных пределов границы.Значения максимальных коэффициентов можно найти в Регламенте Министра инфраструктуры от 12 апреля 2002 г. на условиях технические требования, которым должны отвечать здания и их расположение. В январе С 2017 года вступили в силу изменения технических условий, которые направлены на повышение энергоэффективности. Важен коэффициент теплопередачи (но не единственный) параметр, который следует учитывать при строительстве новые объекты. Текущий максимальный U-фактор для каждого человека элементов, это:

Наружные стены :

  • по адресу ti ≥ 16 °С - 0,23 Вт/(м2·К)
  • при 8°C ≤ ti <16°C - 0,45 Вт/(м2·K)
  • при ti <8°C - 0,90 Вт/(м2·K)

Крыши, плоские крыши и перекрытия под неотапливаемые чердаки или надземные переходы:

  • по адресу ti ≥ 16 °C - 0,18 Вт/(м2·К)
  • при 8°C ≤ ti <16°C - 0,30 Вт/(м2·K)
  • при ti <8°C - 0,70 Вт/(м2·K)

Полы на грунте:

  • по адресу ti ≥ 16 °C - 0,30 Вт/(м2·К)
  • при 8 °C ≤ ti <16 °C –1,20 Вт/(м2·K)
  • при ti <8 °C – 1,50 Вт/(м2·K)

Потолки над помещениями неотапливаемые и закрытые подпольные помещения:

  • по адресу ti ≥ 16 °C - 0,25 Вт/(м2·К)
  • при 8°C ≤ ti <16°C - 0,30 Вт/(м2K)
  • при ti <8°C - 1,00 Вт/(м2K)

Ti - температура нагретого номера.

Условия Технические характеристики также определяют максимальный коэффициент теплопередачи окна. От На 1 января 2017 года максимальный коэффициент теплопередачи окна в г. помещение, в котором температура не превышает 16 0 С, не может быть больше 1,1 Вт/(м2·К). Жилые помещения выше температура. Максимальный коэффициент теплопередачи окна при температуре превышающая 16 0 С, не должна превышать 1,6 Вт/(м2·К).

Постановление Указав технические условия и местоположение здания, также укажите максимальную коэффициенты (в т.ч. коэффициент теплопередачи окна) для окон крыша и дверь. Текущие значения для выбранных элементов не могут превысить:

Мансардные окна:

  • по адресу ti ⩾ 16 °C – 1,3 Вт/(м2·K)
  • при ti <16 °C – 1,6 Вт/(м2·K)

Окна во внутренних стенах:

  • по адресу ti ⩾ 8 °C - 1,3 Вт/(м2·K)
  • при ti <8 °C - без ограничений

Коэффициент теплообмен, разделяющий отапливаемое и неотапливаемое помещение может превышать 1,3 Вт/(м2·К) Двери во внешних перегородках или в перегородки между отапливаемым и неотапливаемым помещением не могут превышать 1,5 Вт/(м2К).

Постановление предусматривает дальнейшее ужесточение нормативов и снижение максимальных коэффициентов теплопередача. Соответствующие правила вступят в силу не раньше января 2021 года. год.

Как проверить коэффициент теплопередача окна?

Во время При покупке окон стоит обратить внимание на коэффициент теплопередачи окна U. Так называемые теплые окна большая экономия тепловой энергии и меньшие счета за отопление строительство.Обозначение коэффициента теплопередачи должно быть в техническая спецификация изделия, однако некоторые производители указывают замеры очень неточным образом. Иногда мы сталкиваемся с ситуацией, когда коэффициент теплопередачи указан только для стекла, а не для всего окна. это умно способ улучшить технические параметры, ведь стекло самое лучшее изолятор. Однако помните, что истинный U-фактор должен быть рассчитывается как для стеклопакета, рамы, так и для всех соединений.Иногда оказывается, что окно с якобы отличными параметрами теплоизоляции (приведенными в только для стекла) являются более слабым изолятором, чем стандартные окна, отмеченные в Правильный способ. Пожалуйста, обратите на это внимание перед совершением покупки. Мы также рекомендуем читая нашу статью о тройном и двойном остеклении, доступном здесь .

Что это такое и как рассчитать коэффициент теплопередачи?

Коэффициент теплопередачи для крыши и плоские крыши

Обсуждение коэффициент теплопередачи, нельзя игнорировать вопрос теплоизоляции крыш и плоские крыши.Их неправильная изоляция может привести к большим потерям тепловая энергия. В настоящее время максимальное значение U для крыш и плоских крыш составляет 0,18 Вт/(м2·К).

Значение рассчитываем коэффициент теплопередачи для крыш так же, как и в случай стен. Нам непременно понадобится онлайн-калькулятор, который будет представлен параметры отдельных материалов. Теплопроводность будет самым важным изоляционный материал. Чем меньше коэффициент лямбда, тем лучше параметры теплоизоляция кровли и плоской кровли.При расчете коэффициента теплопередачи кровельный слой часто отсутствует. Это не имеет значения по теплоизоляционным характеристикам. Пол будет иметь гораздо большее значение используемый теплоизоляционный материал. Для утепления потолков, крыш и для плоских крыш обычно используют минеральную вату. Его преимущество невелико коэффициент лямбда и простота установки. Шерсть эластичная и без особого ставим между балками или в труднодоступных местах, с которым полистирол не справится.В последние годы все больше Утепление пенополиуретаном пользуется популярностью. Его слой создает плотный тепловой мост без хороших параметров теплоизоляция. Если это заинтересовало, см. также наша статья о расходах на утепление индивидуального дома .



На встречу все более ограничительные технические условия должны использоваться для строительства соответствующие материалы.При выборе материала для наружных стен стоит ознакомиться с его лямбда-коэффициент. Чем ниже применяемый коэффициент материал, тем легче будет выполнить технические условия, которые они должны соответствовать зданиям.

Выбор материал для наружных стен, также обратим внимание на их тепловую инерцию. Тепловая инерция определяет продолжительность времени, в течение которого тепловая энергия будет проскользнул сквозь стену. Эти свойства зависят от специфики производства. и качество материала.Чтобы узнать про инерцию, стоит посмотреть параметры техническое обеспечение производителя. Другой способ – оценить вес материала. Принято считать, что чем больше масса строительного материала, тем больше его его тепловая инерция.

Во время выбор материалов, также следует обратить внимание на тип и толщину теплоизоляции строительство. Выбор лучшего качества, более толстых материалов сделает его изолирующим тепло будет выше. Желая снизить коэффициент теплопередачи за счет стены, стоит инвестировать в чуть более толстый слой полистирола или ваты минерал с хорошими параметрами.Это самый простой и, в то же время, самый дешевый способ соответствия текущим техническим условиям, которым они должны соответствовать постройки и расположение здания. Таким образом, можно видеть, что знание коэффициента теплопередачи необходимо при планировании строительства, особенно когда речь идет о бетонном доме с изоляцией.

Рекомендуемые электрогенераторы по выгодным ценам

.

Теплопроводность - определение - Landingpages

Теплопроводность / теплопроводность λ [Вт / (м • К)] определяет перенос энергии в виде тепла; через определенную массу образца за счет внешней разности температур (см. рис. 1). Согласно второму закону термодинамики тепло всегда течет в сторону области с более низкой температурой.

Рисунок 1

Зависимость между количеством теплоты, переносимой в единицу времени (dQ/dt – тепловой поток Q ) и градиентом температуры (ΔT/Δx) для площади поверхности А, через которую тепло течет перпендикулярно при постоянная скорость, описывается основным уравнением теплопроводности.

Таким образом, коэффициент теплопроводности λ является постоянным свойством материала, характеризующим его в стационарных условиях теплопередачи. Его можно рассчитать по следующему уравнению:

сут: а - температуропроводность
с р - удельная теплоемкость
ρ - плотность

Значения теплопроводности для различных материалов приведены на рис. 2.

Плакаты NETZSCH
При производстве и обработке материалов ключевую роль играет знание их термических свойств.На наших плакатах вы найдете наиболее важные тепловые свойства для различных групп материалов.
Дополнительная информация

Ссылки по теме:

.

Как рассчитать утепление стен? | Строим Дом

Как рассчитать теплоизоляционные характеристики однослойной стены?

Теплоизоляция, т. е. теплоизоляция однослойной, т. е. однородной стены, зависит от толщины стены и теплопроводности материала, использованного для ее возведения. Эта характеристика определяется коэффициентом U, который рассчитывается путем деления коэффициента λ материала стены на ее толщину d:

.

U = λ/d

Вот средние значения коэффициента теплопроводности λ материалов для однородных стен:

  • ячеистый бетон - 0,10 Вт/(м•К),
  • пористая керамика - 0,14 Вт/(м•К),
  • пористая керамика с минераловатными вставками - 0,08 Вт/(м•К).

Однослойные стены с экономически обоснованной толщиной 40-50 см едва ли могут обеспечить требуемое действующими нормами значение U до 0,23 Вт/(м2·K). Поэтому для их возведения используются только самые легкие разновидности ячеистого бетона и керамический пустотелый кирпич с улучшающими теплоизоляцию вставками из минеральной ваты.

Вам потребуются соответственно блоки из ячеистого бетона толщиной 42 см сорта 400 или блоки из ваты толщиной 38 см. Не учитываются теплоизоляционные свойства штукатурки и сопротивление теплопередаче, которые хотя и не меняют результат, но могут быть значительными в случае однослойных стен.

Пример: Рассчитаем коэффициент теплоизоляции однородной стены толщиной d = 42 см (0,42 м) из ячеистого бетона с коэффициентом λ = 0,10 Вт/(м•К).

0,10 Вт/(м·К)/0,42 м = 0,238 Вт/(м²·К)

Как рассчитать теплоизоляционные характеристики двух- и трехслойной стены?

Термические сопротивления отдельных слоев должны суммироваться. Термическое сопротивление R является обратной величиной коэффициента проницаемости U. Его рассчитывают путем деления толщины слоев материала на коэффициент λ.

R = 1 / U = (d / λ)

Расчет теплоизоляции многослойной стены с утеплителем поэтому требует знания коэффициентов теплопроводности всех используемых в ней материалов.

Для расчетов чаще всего используются следующие значения λ:

  • утеплитель из полистирола или минеральной ваты - 0,04 Вт/(м•К), хотя некоторые разновидности могут иметь значение λ на 10-15% ниже,
  • строительные материалы:
    - ячеистый бетон высших сортов g - 0,15 Вт/(м•К),
    - поризованная керамика - 0,25 Вт/(м•К),
    - блоки силикатные 0,8 Вт/(м•К) .

Конечно, самым важным является тип и толщина изоляционного материала.

Пример: Рассчитываем коэффициент теплоизоляции двухслойной стены толщиной d = 25 см (0,25 м) из пористой керамики, утепленной пенопластом толщиной 15 см (0,15 м).

Термическое сопротивление будет:

R = d/λ (стены) + d/λ (теплоизоляция)
R = 0,25 м/0,25 Вт/(м•К) + 0,15 м/0,04 Вт/(м•К) = 1 + 3,75 (м²• К) / Вт

Тогда коэффициент теплопередачи U будет:

U = 1 / R
U = 1 / 4,75 (м² • К) / W = 0,210 Вт / (м² • К) (сопротивление теплопередаче и штукатурку не учитывали).

Аналогично выполняются расчеты для трехслойной стены.

Ярослав Анткевич
фото: Silikaty Group

.

Коэффициент теплопередачи U - по нормам, по расчетам

Каждая перегородка здания имеет свои требования к теплоизоляции. Только дом, построенный в соответствии с техническими регламентами, имеет шанс быть энергоэффективным домом, что в настоящее время является очень важным и желательным свойством зданий. Климатическая ситуация не улучшится, загрязнение воздуха и воды не уменьшится, если только строительство не будет становиться все менее энергозатратным.

Коэффициент теплопередачи U определяет, сколько энергии (выраженное в ваттах) проходит через 1 квадратный метр перегородки (стены, крыша, окна, двери) при разности температур с обеих сторон 1 К (Кельвин). Единицей коэффициента теплопередачи является Вт/(м²·К) . Чем ниже коэффициент U перегородки, тем лучше теплоизоляция перегородки. Как коэффициент его значение не зависит от климатической зоны, влажности и температуры.

Зачем нужно знать перегородки строящегося или реконструируемого дома?

Это одно из необходимых требований для того, чтобы дом соответствовал применимым нормам. С января 2021 года действует третий и последний этап внесенных в 2013 году изменений в технические условия, которым должны соответствовать здания и их расположение. Теплоизоляция наружных стен, крыш, плоских крыш, полов, потолков, окон, дверей адаптирована к реалиям современного метода строительства.

Перегородки типа крыш и плоских крыш, наружных стен, полов по грунту выполняются из различных материалов. Поэтому при проектировании здания нужно рассчитывать U-факторы для каждой из этих перегородок с учетом параметров и толщин отдельных строительных материалов, из которых они выполнены.

Подробности и соответствующие значения для расчета коэффициента теплопередачи можно найти в стандартах PN-EN ISO 6946: 2017-10 «Строительные компоненты и строительные элементы.Термическое сопротивление и коэффициент теплопередачи. Метод расчета. «И PN-EN ISO 13370:2017-09 «Тепловые характеристики зданий. Теплопередача через грунт. Методы расчета».

Что касается столярных изделий, то при выборе окон и входных дверей необходимо получить информацию об их коэффициенте теплопередачи от производителя.

.

Коэффициент теплопередачи и коэффициент теплопроводности

При проектировании теплоизоляции важны два фактора. Первый – это коэффициент теплопередачи (U) – определяющий теплоизоляцию здания. Второй — коэффициент теплопроводности (лямбда, λ), связанный со свойствами материала. Это два разных фактора, но они связаны друг с другом.

Коэффициент теплопроводности обозначается символом лямбда (λ) и относится к способности данного вещества или материала проводить тепло.Чем ниже коэффициент теплопроводности, тем лучше теплоизоляционные свойства.

Коэффициент теплопроводности традиционного полистирола колеблется в районе λ ≤ 0,040. Энергосберегающие пассивные полистиролы (серые, получившие свой цвет благодаря добавлению графита, повышающего теплоизоляционные свойства) могут иметь коэффициент теплопроводности даже λ ≤ 0,030.

Значение коэффициента теплопроводности и толщина материала необходимы для расчета теплового сопротивления отдельных слоев перегородки (определяется символом R, вычисляется по формуле: толщина по лямбда) и для определения коэффициента теплопередачи всех перегородок в здании.

Благодаря коэффициенту теплопередачи мы можем рассчитать теплоизоляцию перегородок. Коэффициент теплопередачи стены, крыши или потолка указан в строительных нормах, которые налагают обязательство получать конкретные значения для отдельных перегородок. Дело в том, что здание должно соответствовать нормам, направленным на снижение потерь энергии. Действующие значения коэффициента теплопередачи стены или кровли изменятся с 1 января 2021 года (см. таблицу).Энергоэффективность просто стала необходимостью в современном мире.

Коэффициент теплопередачи - поправка к нормативам

Коэффициент теплопередачи - в настоящее время

Коэффициент теплопередачи - после изменений с 1 января 2021 г.

Наружные стены

0,23 Вт/(м2К)

0,20 Вт/(м2К)

Крыши, потолки, плоские крыши

0,18 Вт/(м2К)

0,15 Вт/(м2К)

Значение коэффициента теплопередачи зависит от:

  • тип перегородки (окна, двери, стены, крыши, крыши и т.д.)
  • типа строительного материала, используемого в данной перегородке
  • толщина перегородки

U-коэффициент – это количество энергии (выраженное в ваттах), которая проникает через перегородку по отношению к площади перегородки и разности температур по обеим сторонам перегородки. Единицей коэффициента теплопередачи является – Вт/(м²·К).

Для расчета коэффициента теплопередачи необходимо знать:

  • коэффициенты теплопроводности материалов (λ [Вт/(м·К)]), из которых изготовлена ​​перегородка (можно заменить стандартными значениями или значениями, предоставленными производителями используемых материалов),
  • толщина отдельных слоев (м).

Для повышения эффективности теплоизоляции необходимо увеличить толщину изоляционного слоя или использовать материалы с более низким коэффициентом теплопроводности. Возможно также сочетание обоих этих условий.

.

4. Лаборатория термических свойств материалов / Кафедра термодинамики

под редакцией Павла Гиля

LFA 427 NETZSCH.

Устройство для измерения температуропроводности материалов с использованием метода лазерной вспышки. Этот метод заключается в подаче лазерного импульса на испытуемый образец и измерении его температуры ИК-датчиком на другой стороне. В LFA 427 можно тестировать следующие материалы: керамику, стекло, металлы, жидкие металлы и жидкости (помещенные в специальный резервуар), порошки, волокна и композиты.


DSC 8000 ParkinElmer. Дифференциальный сканирующий калориметр.

Прибор предназначен для определения температурных и тепловых эффектов эндотермических и экзотермических изменений различных видов химических реакций и фазовых переходов.


Модель Unitherm 2022.

Прибор измеряет теплопроводность таких материалов, как полимеры, керамика, композиты, стекло, резина, некоторые металлы и другие материалы с низкой теплопроводностью.Пасты и жидкости также можно использовать, используя специальный контейнер. Диапазон теплопроводности: от 0,1 до 40 Вт/(мК).


Анализатор KD2 PRO.

Анализатор

представляет собой ручной портативный прибор для измерения тепловых свойств грунтов, твердых, сыпучих, полужидких и жидких материалов. Комплект состоит из пульта управления и датчиков, которые вставляются в испытуемый материал. Одноигольчатые датчики используются для измерения электропроводности/термического сопротивления.Двухстрелочный датчик измеряет электропроводность, термическое сопротивление, удельную теплоемкость и температуропроводность.


Стенд лабораторный для измерения теплопроводности металлов и их сплавов.

Одним из уникальных используемых методов измерения теплопроводности металлов и их сплавов является квазистационарный метод, в котором используется фазовый переход. Это метод, который относится к нестационарным абсолютным методам измерения теплопроводности.Метод измерения основан на том, что испытуемый образец помещают вертикально между термодами. От верхнего термода (нагревателя) идет тепловой поток, который вызывает повышение температуры образца и нижнего термода. Этот процесс продолжается до тех пор, пока не будет достигнута температура плавления металла (метрологического вещества), содержащегося в нижнем термоде. Температуру устанавливают у нижнего термометра и по длине образца за период времени, в течение которого метрологическое вещество претерпевает фазовый переход. В этом состоянии, известном как квазистационарное состояние, тепловая мощность, поступающая в нижний термод, определяется массой метрологического вещества и временем квазистационарной остановки температуры.Знание измеренного перепада температуры и тепловой мощности позволяет определить коэффициент теплопроводности испытуемого образца.



XA 210/Y Весы аналитические.

Весы предназначены для лабораторных измерений проб топлива, проб для измерения температуропроводности и теплопроводности. Технические данные: максимальная нагрузка 210 г, минимальная нагрузка 1 мг, точность считывания 0,01 мг.

.

Значения коэффициента лямбда - коэффициент теплопроводности строительных материалов

ЗНАЧЕНИЕ ЛЯМБДА [λ]

Теплопроводность - это информация о потоке энергии, протекающем через единицу поверхности слоя материала толщиной 1м, при разности температур по обе стороны этого слоя 1К (1°С). Коэффициент теплопроводности материала λ [Вт/(м•К)] является характеристическим значением данного материала. Это зависит от его химического состава, пористости, а также от влажности.

Важно:

Чем ниже значение λ, тем лучше теплоизоляционные свойства.

таблица коэффициента λ для материалов (условия средней влажности)

Битум

λ [Вт/(м·К)]

Битум нефтяной

0,17

Асфальтовая мастика

0,75

Асфальтобетон

1,00

Битумный войлок

0,18

Бетон

λ [Вт/(м·К)]

Бетон из простого каменного заполнителя

плотность 2400 кг/м3

1,70

плотность 2200 кг/м3

1,30

плотность 1900 кг/м3

1,00

Бетон на известковом заполнителе

плотность 1600 кг/м3

0,72

плотность 1400 кг/м3

0,60

плотность 1200 кг/м3

0,50

Тощий бетон

1,05

Цементная стяжка

1,00

Железобетон напр.потолок

1,70

Древесина и древесные материалы

λ [Вт/(м·К)]

Сосна и ель

поперек волокон

0,16

вдоль волокон

0,30

Бук и дуб

поперек волокон

0,22

вдоль волокон

0,40

Фанера

0,16

Пористая древесноволокнистая плита

0,06

Твердая фибровая плита

0,18

Опилки древесные, рассыпные

0,09

Щепа древесная, прессованная

0,09

Рассыпная древесная щепа

0,07

Гипс и изделия из гипса

λ [Вт/(м·К)]

Газогипс

0,19

Гипсокартон

0,23

Гипсовая стяжка, чистая

1,00

Гипсовая стяжка с песком

1,20

Гипсовые плиты и блоки

0,35

Природные камни

λ [Вт/(м·К)]

Мрамор, гранит

3,50

Песчаник

2,20

Известняк пористый

0,92

Известняк компактный

1,15

Стеновой щебень вкл.минометы 35% 9000 5

2,50

Материалы конструкции:

λ [Вт/(м·К)]

Стена из ячеистого бетона с тонкой противопожарной защитой (500)

0,17

Кладка бетонная ячеистаядля тонкой крышки (600)

0,21

Стена из ячеистого бетона с тонкой противопожарной защитой (700)

0,25

Стена из ячеистого бетона с тонкой противопожарной защитой (800)

0,29

Композитная бетонная стена для обшивки ce-wap (500)

0,25

Кладка бетонная ячеистаяпо приглашению ce-wap (600)

0,3

Композитная бетонная стена для ce-wap board (700)

0,35

Композитная бетонная стена для ce-wap board (800)

0,38

Стенка из керамического кирпича, отверстие

0,62

Стена из полнотелого керамического кирпича

0,77

Полая кирпичная стена

0,64

Кирпич клинкерный стеновой

1,05

Кирпичная стена в клетку

0,56

Полнотелая кирпичная стена

0,77

Пустотелый кирпич из силикатного кирпича

0,80

Полнотелая кирпичная стена из силикатного кирпича

0,90

Теплоизоляционные материалы:

λ [Вт/(м·К)]

Пенополистирол

0,031-0,045

Минеральная вата

0,033-0,045

Доски из вспененного пробкового дерева

0,045

Асфальтовые пробковые плиты

0,070

Соломенные доски

0,080

Тростниковые пластины

0,070

Цементно-стружечные плиты

0,15

Полиуретан (PUR/PIR)

0,023-0,029

Воздух (негазированный)

0,02

Белое пеностекло

0,12

Черное пеностекло

0,07

Экранирующие материалы

λ [Вт/(м·К)]

Цементная штукатурка

1

Известковая штукатурка

0,70

Цементно-известковая штукатурка

0,82

Штукатурка тонкослойная

0,70

Прочее

λ [Вт/(м·К)]

Алюминий

200

Цинк

110

Изоляционный войлок

0,060

Глина

0,85

Песчаная глина

0,70

Земля

0,90

Медь

370

Битумный войлок

0,18

Бумага

0,25

Средний песок

0,40

Облицовочная керамическая плитка, терракота

1,05

Картон

0,14

Конструкционная сталь

58

ACERMANA потолок 15см

0,9

ACERMANA потолок 18см

1

ACERMANA потолок 22см

1,14

Оконное стекло

0,80

Органическое стекло

0,19

Чугун

50

Печной шлак

0,28

Гравий

0,90

Напольное покрытие из ПВХ

0,20

.

Смотрите также