В чем отличие переменного тока от постоянного
В чем разница между переменным током и постоянным?
Происхождение
Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.
Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.
Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.
Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.
Краткая история электричества
Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.
Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.
Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.
В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».
Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.
Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.
Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.
Дальше пойдет перечисление важных для истории электричества открытий.
1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.
1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.
Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.
На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.
Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.
Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы
20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.
Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.
Чем постоянный ток отличается от переменного и как преобразовывается?
Постоянный ток.
Постоянный ток — характеризует движение частиц в определенном направлении, его напряжение или сила имеют одно и то же значение. Источниками постоянного тока могут выступать: аккумуляторы, батарейки или генераторы, где он выпрямляется за счет коллектора. Постоянный ток применяется часто, с ним работают: бытовые приборы, зарядные устройства, его применяют в двигателях и аккумуляторах.
Переменный ток.
Чаще всего используется переменный ток, по величине и направлению он постоянно изменяется, с равными промежутками времени. Переменный ток может быть однофазным и многофазным. Для выработки переменного тока используют генераторы. Он используется в: радио, телевидении, телефонии, широко применяется в промышленности.
Преобразование.
В розетках мы получаем переменный ток, но электрическим приборам необходим — постоянный.
Для преобразования одного вида в другой используются специальные выпрямители. Преобразование может происходить как из переменного в постоянный ток, так и наоборот.
Выработка тока.
Генератор постоянного и переменного тока.
Генератор превращает механическую энергию в электрическую энергию. Тот ток, который получается после такого процесса, бывает постоянным и переменным. Устройство генератора постоянного тока простое и понятное, оно состоит из неподвижного статора, имеющего вращающийся ротор, и оснащено дополнительной обмоткой. Благодаря движениям ротора происходит выработка электрического тока. За счет действий ротора, совершаемых в магнитном поле, генератор переменного тока дает энергию. Главное преимущество такого генератора, это быстрое вращение движущего элемента. Скорость ротора быстрее в сравнении с генератором переменного тока.
Синхронный и асинхронный генератор.
Генератор переменного тока разделяют на синхронный и асинхронный. Их отличие, это возможности, которые они предоставляют. Конструкция синхронного генератора намного сложнее, чем в асинхронном. Он производит ток более чистый, пусковые загрузки переносятся легко. Такие конструкции подключают к технике, которая переносит перепады напряжения не очень хорошо.
Что касается асинхронных генераторов, то конструкция намного проще, из-за этого они легко справляются с короткими замыканиями. Их часто используют для питания техники сварочного типа и электрических инструментов. Высокоточную технику к такому устройству подключать не нужно.
Однофазный и трехфазный генератор.
Во внимание обязательно стоит брать характеристику тока, который вырабатывается. Однофазный генератор работает на 220В, а вот трехфазный 380 В
Любой покупатель, должен это знать и при покупке такой конструкции обращать на это внимание. Однофазные модели можно встретить в бытовых нуждах, для такого назначения они используются часто. А вот трехфазные генераторы питают энергией большие объекты, здания, сооружения, деревня и поселки.
Какими должны быть розетки
Размеры розеток, их тип, материал, из которого они изготовлены, зависят в первую очередь от назначения розеток, токов и напряжений, на которые они рассчитаны. Устройства, работающие при постоянном напряжении, имеют полярные вилки. Поэтому и розетки для них должны быть полярными. Тогда даже неопытный пользователь не сможет перепутать, где «+» и «–».
Переменный ток в цепи представляет собой электрический поток заряженных частиц, направление и скорость которых периодически изменяется во времени по определенному закону.
Инструкция
Обратитесь к общему понятию переменного тока в электрической цепи, описанному в школьном учебнике. Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Это означает, что величина силы тока в сети переменного тока изменяется по закону синуса или косинуса. Собственно говоря, это отвечает тому току, что течет в бытовой электрической сети. Однако синусоидальность тока не является общим определением переменного тока и не до конца объясняет природу его протекания.
Нарисуйте на листе бумаги график синусоиды. По данному графику видно, что значение самой функции, выражаемой силой тока в данном контексте, изменяется от положительного значения к отрицательному. Причем время, через которое происходит смена знака, всегда одно и то же. Это время называется периодом колебаний тока, а обратная ко времени величина – частотой переменного тока. Например, частота переменного тока бытовой сети составляет 50 Гц.
Обратите внимание на то, что обозначает смена знака функции физически. На самом деле, это означает лишь то, что в какой-то момент времени ток начинает течь в противоположную сторону
Причем, если закон изменения синусоидальный, то смена направления движения происходит не скачком, а с постепенным торможением. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Как известно, направление тока задается направлением положительно заряженных частиц в цепи. Таким образом, в цепи переменного тока заряженные частицы через определенное время изменяют направление своего движения на противоположное.
Почему переменный ток опаснее постоянного
В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.
Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:
- Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
- При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
- Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.
С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами. {SOURCE}
{SOURCE}
Преобразование
Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:
- подключение моста с четырьмя диодами, имеющих необходимую мощность;
- подключение фильтра или конденсатора на выход с моста;
- подключение стабилизаторов напряжения для уменьшения пульсаций.
Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.
15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют
Обращайте внимание на свое тело. Если вы замети
7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.
Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.
Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.
9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.
Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.
Чем обосновано разнообразие электротоков
У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.
В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:
- задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
- преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
- поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
- двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.
Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:
- чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
- питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
- постоянное напряжение значительно безопаснее для человека, чем переменное.
Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.
{SOURCE}
Энергия и мощность в электротехнике
В электротехнике существуют еще и такие понятия, как энергия и мощность. связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.
Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P=IxU. единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.
Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.
Что такое электрический ток?
Электрическим током называют постоянную или переменную величину, которая возникает на основе направленного или упорядоченного движения, создаваемого заряженными частицами — в металлах это электроны, в электролите — ионы, а в газе — и те, и другие. Иными словами, говорят, что электрический ток «течет» по проводам.
Таблица величин
Некоторые ошибочно полагают, что каждый заряженный электрон двигается по проводнику от источника до потребителя. Это не так. Он лишь передает заряд на соседние электроны, сам оставаясь на месте. Т.е. его движение хаотично, но микроскопично. Ну а уже сам заряд, двигаясь по проводнику, достигает потребителя.
Электрический ток имеет такие параметры измерения, как: напряжение, т.е. его величина, измеряющаяся в вольтах (В) и сила тока, которая измеряется в амперах (А)
Что очень важно, при трансформации, т.е. уменьшении или увеличении при помощи специальных устройств, одна величина воздействует на другую обратно пропорционально
Это значит, что уменьшив напряжение посредством обычного трансформатора, добиваются увеличения силы тока и наоборот.
История
Компания Томаса Эдисона, которая называлась «Эдисон Электрик Лайт», была основана в конце 70-х годов XIX века. Тогда, во времена свечей, керосиновых ламп и газового освещения лампы накаливания, выпускаемые Эдисоном, могли работать непрерывно 12 часов. И хотя сейчас этого может показаться до смешного мало — это был настоящий прорыв. Но уже в 1880-е годы компания смогла не только запатентовать производство и передачу постоянного тока по трехпроводной системе (это были «ноль», «+110 В» и «-110 В»), но и представить лампу накаливания с ресурсом в 1200 часов.
Никола Тесла
Именно тогда и родилась фраза Томаса Эдисона, которая впоследствии стала известна всему миру, — «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи».
Ну а уже к 1887-му в Соединенных Штатах успешно функционирует больше 100 электростанций, которые вырабатывают постоянный ток и где используется для передачи именно трехпроводная система, которая применяется в целях хотя бы небольшого снижения потерь электроэнергии.
А вот ученый в области физики и математики Джордж Вестингауз после ознакомления с патентом Эдисона нашел одну очень неприятную деталь — это была огромная потеря энергии при передаче. В то время уже существовали генераторы переменного тока, которые не пользовались популярностью по причине оборудования, которое бы на подобной энергии работало. В то время талантливый инженер Никола Тесла еще работал у Эдисона в компании, но однажды, когда ему было в очередной раз отказано в повышении зарплаты, Тесла не выдерживал и ушел работать к конкуренту, которым являлся Вестингауз. На новом месте Никола (в 1988 году) создает первый прибор учета электроэнергии.
Именно с этого момента и начинается та самая «война токов».
Графические изображения
Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).
Горизонтальная ось отображает время, вертикальная – напряжение
Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.
Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.
Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)
Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)
Начальное положение рамки
Обозначения:
- 1 – полюса магнита S и N;
- 2 – рамка;
- 3 – направление вращения рамки;
- 4 – магнитное поле.
Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.
Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).
Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).
Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц)
Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.
Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).
Сварка с применением постоянного тока
Сварочные аппараты на постоянке поддерживает 2 режима работы — процесс соединения с прямой и обратной полярностью. Пользуясь такими установками необходимо регулярно следить за их режимом работы, так как одни металлы схватываются на прямой, а другие на обратной полярности.
Наиболее широко применяется прямая полярность. Сварной кратер получается глубоким и узким. Подача тепла уменьшается, скорость прохода увеличивается. Применяется для нарезки металла, имеет стабильную дугу, в результате образуется качественное соединение. Используется во время работы со сталью, толщиной от 4 мм. Большинство материалов свариваются именно на прямой полярности.
Обратная полярность применяется для соединения тонких металлов средней толщины. Электросварочный шов не глубокий, но достаточно широкий. При этой полярности нельзя пользоваться электродами, которые чувствительны к перегреву.
Основными достоинствами сварки с постоянным напряжением является:
- Отсутствие брызг расплавленного металла.
- Устойчивость дуги электрического тока.
Источники ЭДС
Источники электротока любого рода бывают двух видов:
- первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
- вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.
Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.
Упрощенное изображение конструкции генератора
Обозначения:
- 1 – направление вращения;
- 2 – магнит с полюсами S и N;
- 3 – магнитное поле;
- 4 – проволочная рамка;
- 5 – ЭДС;
- 6 – кольцевые контакты;
- 7 – токосъемники.
Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?
Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени
Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц
Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.
Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.
Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в трансформаторные подстанции, которые находятся вблизи домов, предприятий и остальных конструкций.
В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.
Отличия электродов постоянного тока и переменного
Электроды условно не различаются. Но постоянный поток энергии не подходит для соединения переменным током. Электросварочные материалы, которые рассчитаны для переменки, успешно применяются и для электросварки с помощью постоянного электричества. Образующиеся электроды эксперты называют универсальными.
Универсальные электроды характеризуются:
- Хорошей и стабильной дугой, которая даже повторно легко зажигается.
- Объемной выработкой работы.
- Высокой рентабельностью.
- Небольшой степенью разбрызгивания.
- Хорошим отделением примесей.
- Возможностью доброкачественно сварить загрязненные, окисленные, ржавые и влажные материалы.
- Простейшими требованиями к устройству и работнику.
Особенностью универсальных электросварочных электродов является, возможность изготавливать соединение металлических изделий, даже если присутствует большое расстояние между частями металлов. Они отлично подходят для электросварки коротких швов и точечного прихвата.
Сравнивая сварку на постоянном и переменном напряжении, преимуществ больше у аппаратов с постоянным потоком энергии. Экономятся сварные материалы, так как разбрызгивание минимальное. Постоянку просто и легко использовать в работе, применяется для тонкостенных изделий. Воздействие погодных условий не влияет на устойчивость дуги, обеспечивая высокую производительность. Все участки на сооружении провариваются, в итоге специалист получает качественный и аккуратный рубец.
Устройство с переменкой обеспечивает хорошее качество соединения, простоту и удобство сварочного процесса. Оборудование, которое работает на данном виде напряжения стоит намного дешевле.
Основным различием переменного и постоянного электричества является то, что на электрод во время работы подается ток или переменно с частотой 50 Гц или постоянно. В конструкции сварочного аппарата постоянного потока есть выпрямители в виде диодов, которые выпрямляют электричество на выходе и создают знакопостоянное пульсирующее значение. Современные полупроводниковые выпрямители гарантируют высокую результативность и высокий показатель полезного действия. Следовательно, более качественная сварка получится с применением постоянного потока. Как показала практика, электроды переменки — прошлый век.
Сварочный ток — самый главный параметр, от которого зависит качественное соединение. Подбирать диаметр электрода необходимо с учетом толщины металла. И отталкиваясь от его диаметра, выставляется электричество. Эту информацию можно найти на упаковке. Точных и конкретных настроек напряжения нет — каждый мастер ориентируется на свои чувства и выставляет нужный параметр напряжения.
В специальных магазинах очень широкий выбор электродов для дуговой электросварки
Покупая, обращайте внимание на качество продукции и наличие лицензии
Основные токовые величины
При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока. измеряемой в амперах .
Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.
Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление. измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.
Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.
Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:
- Сила тока: I = U/R (ампер).
- Напряжение: U = I x R (вольт).
- Сопротивление: R = U/I (ом).
Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.
Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.
Основные отличия между электрическими машинами постоянного и переменного тока
Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение.
По данным от maxon motors, электрические машины постоянного тока имеют ограничения по времени эксплуатации коллекторно-щеточного, срок службы которого составляет в среднем 1000 – 1500 часов. При перегрузке срок службы составляет менее 100 часов, а при нормальных (номинальных) условиях эксплуатации может достигать и 15 000 часов. Скорость вращения таких машин ограничена процессами коммутации в коллекторно-щеточном узле и не превышает 10 000 об/мин.
Электрические машины постоянного напряжения имеют хорошую надежность и легкую управляемость, но страдают довольно приличными потерями. КПД снижается из-за сопротивления в обмотках, вихревых токов, потерь в щеточно-коллекторном узле.
Асинхронные электродвигатели используют другой принцип – на катушки статора подается переменное напряжение, которое создает вращающееся магнитное поле, а магнитное поле ротора индуцируется магнитным полем статора. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели. Они используют немного другой принцип работы – катушки статора все так же запитываются переменным напряжением, а в ротор через контактные кольца подается постоянный ток (или используют постоянные магниты). Таким образом, магнитные поля статора и ротора сцепляются и машина вращается. Синхронный электродвигатель имеет жесткую механическую характеристику и скорость вращения ротора соответствующую скорости вращения магнитного поля статора в отличии от асинхронных машин, в которых присутствует скольжение (разница между скоростью вращения магнитного поля статора и реальной скоростью ротора).
Электродвигатели переменного тока предназначены для работы с определенной точкой на механической характеристике. Эта точка соответствует максимальной производительности двигателя. При работе в другой точке механической характеристики КПД машины резко снизится. Асинхронные электродвигатели переменного тока потребляют дополнительную энергию для создания магнитного поля путем индукции тока в роторе. Следовательно, двигатели переменного тока менее эффективны, чем двигатели постоянного тока. Фактически, машина постоянного тока на 30% эффективнее машины переменного тока из-за того.
Принцип работы, отличия постоянного от переменного электрического тока
Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.
Определение постоянного электрического тока, его источники
Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.
Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.
Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется в переменный с использованием специальных преобразователей (инверторов).
Принцип работы переменного тока
Переменный ток (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.
Переменный ток может быть как одно- , так и трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.
Основные характеристики переменного тока — действующее значение напряжения и частота.
Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.
Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).
И так мы подошли к понятию частота— это отношение числа полных циклов (периодов) к единице времени периодически меняющегося электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.
Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!
Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями к электрощиту. У многих возникает вопрос: а почему в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах. С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.
И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.
Как переменный ток сделать постоянным
Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи выпрямителей.
- Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
- Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).
И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.
- Далее при необходимости для уменьшения уровня пульсаций, дополнительно могут применяются стабилизаторы тока или напряжения.
Преобразователь постоянного тока в переменный
Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.
Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.
Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.
Что такое фаза, ноль, заземление читайте в следующей нашей статье.
В чем отличие переменного тока от постоянного. Электрический ток постоянный и переменный
Постоянный и переменный то к
В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.
Постоянный ток
Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока - это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.
Переменный ток
(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление - это область графика ниже нуля.
Теперь давай разберемся, что такое частота. Частота это - период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду - это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.
Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.
Преобразование переменного тока в постоянный
Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.
что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.
Электрическим током называют направленное, упорядоченное движение заряженных частиц.
Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения .
Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.
Разница переменного тока от постоянного
Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени. Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.
Источниками переменного тока на объектах различного назначения являются розетки . К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.
Передача переменного тока потребителям
Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.
Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.
Преобразование переменного тока в постоянный
Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном. Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:
- Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
- Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
- Подключение стабилизаторов напряжения для снижения пульсаций.
Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.
В 21-веке электроника стала очень популярной. Многие люди хотят узнать больше о радиотехнике и начинают читать специальные книги, хотя многое в книгах не понятно. И поэтому начинают путаться, задавать много вопросов. Не могут найти подходящие и понятные сайты о электронике, где можно вкратце и просто понять что к чему. Но что-то мы далеко ушли, ладно давайте приступим к делу. Задача - рассказать всё подробнее и понятнее о постоянном и переменном токе.
Постоянный ток
До того времени, когда не было радиоприёмников и радиосвязи, был ток который тёк в одну сторону - его назвали постоянным, на графике он изображается прямой линией, как показано на рисунке ниже.
Давайте разберёмся, каков принцип работы этого тока, а он очень прост. Потому что постоянный ток течёт только в одну сторону. На мощных электростанциях вырабатывается переменный ток, его нужно сделать в постоянный. Постоянный ток может создать только гальванический элемент. Гальванический элемент - это элемент вырабатывающим постоянный ток, то есть обычная батарейка. Принцип работы батарейки разбирать не будем, нам сейчас главное, чтобы в вашей памяти уложился только постоянный и переменный ток. Допустим, мы выработали постоянный ток, он начнёт двигаться от плюса к минусу, это обязательно запомнить.
Переменный ток
Теперь переходим к переменному току, всё радиосвязь появилась, переменный ток стал изюминкой. Рассмотрим график переменного тока. Вы сразу обратили внимание на эти странные буквы, они нам не нужны, кроме одной - Т. У переменного тока есть особенность, он может менять своё направление, например: он, движется то в одну сторону, потом в другую. Этот процесс называется колебанием или периодом. На рисунке период обозначен этой самой буквой Т. Видно, что выше оси t волна, и ниже её, тоже волна. Это значит, что выше оси это движение к плюсу, а ниже, движение к минусу, проще говоря, это положительный полупериод, почему полупериод, потому что два полупериода равны T, то есть равны периоду, значит они всё таки полупериоды. Период - то же самое, что и колебание. Несколько колебаний совершённые в 1 секунду называют частотой. Итак, разобрались, что такое постоянный и переменный ток, думаю что разобрались.
Запомните: В розетке всегда 220 В переменного тока - он очень опасный. Один удар может даже убить человека, поэтому соблюдайте осторожность!
В памяти у вас должно отложиться: движение постоянного и переменного тока; графики постоянного и переменного тока; что такое частота, полупериод, период.
Кстати забыл сказать, в чём измеряется частота. Запомните: частота измеряется в Герцах . Допустим, совершается 50 колебаний в секунду, это значит что частота равна 50 герц. Таким образом можно определять любые другие значения. Всем пока, с вами был Дмитрий Цывцын.
Виды тока
Среди видов электрического тока различают:
Постоянный ток:
Обозначение (-) или DC (Direct Current = постоянный ток).
Переменный ток:
Обозначение (
) или AC (Alternating Current = переменный ток).
В случае постоянного тока (-) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.
В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «-».
В случае переменного тока (
) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.
При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока. Единица частоты - герц (Гц). Однофазный переменный ток требует наличия проводника, проводящего напряжение, и обратного проводника.
Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.
Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами
Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.
О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.
Преобразователи переменного постоянного тока. Устройство.
Василий Сонькин
Если вдоль всего Садового кольца встанут люди, возьмутся за руки, и одновременно будут шагать в одну сторону, то через каждый перекресток будет проходить много людей. Это постоянный ток. Если же они будут делать пару шагов вправо, потом влево, через каждый перекресток пройдет много людей, но это будут одни и те же люди. Это переменный ток.
Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?
Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди - получается ток.
Генератор - как насос для воды, а провод – как шланг. Генератор-насос качает электроны-воду через провода-шланги.
Переменный ток - это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает - это и есть смена направлений движения. А 220 вольт - это максимально возможный «напор», с которым движутся электроны в этой сети.
В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.
Постоянный ток - это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.
Что такое переменный ток и чем он отличается от тока постоянного
Переменный ток. в отличие от тока постоянного. непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.
Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.
На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.
Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).
Рисунок 1. Схема простейшего генератора переменного тока
Убедимся в том, что такое устройство действительно является источником переменной ЭДС.
Предположим, что магнит создает между своими полюсами равномерное магнитное поле. т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.
Стороны же в и г рамки - нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.
В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.
В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.
Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.
Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.
Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.
Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.
ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.
Используя явление электромагнитной индукции. можно получить переменную ЭДС и, следовательно, переменный ток.
Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.
Графическое изображение постоянного и переменного токов
Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.
Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, - значения той величины, график которой собираются построить (ЭДС, напряжения или тока).
На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки - противоположного направления, которое принято называть отрицательным.
Рисунок 2. Графическое изображение постоянного и переменного тока
Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.
Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.
Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.
То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.
Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.
Построение графика переменной ЭДС
Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.
Рисунок 3. Построение графика переменной ЭДС
Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.
В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.
При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).
По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.
Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).
При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.
График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).
На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.
Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.
Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.
Полученная нами волнообразная кривая называется синусоидой. а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.
Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.
Синусоидальный характер изменения тока - самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.
Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.
Период, амплитуда и частота - параметры переменного тока
Переменный ток характеризуется двумя параметрами - периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.
Рисунок 4. Кривая синусоидального тока
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.
Im, Em и Um - общепринятые обозначения амплитуд тока, ЭДС и напряжения.
Мы прежде всего обратили внимание на амплитудное значение тока. однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.
Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.
i. е и u - общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.
Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.
Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени - T/4 его амплитудному значению. Ток также достигает своего амплитудного значения но уже в обратном на правлении, по истечении времени, равного 3/4 Т.
Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.
Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.
Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды. необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f
Частота переменного тока измеряется единицей, называемой герцем.
Если мы имеем переменный ток. частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.
Итак, мы определили параметры переменного тока - период, амплитуду и частоту. - которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.
При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.
Круговая частота обозначается буквой #969 и связана с частотой f соотношением #969 = 2#960 f
Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается р а мка в 1 секунду, и выражает собой ско р ость вращения рамки, которую принято называть угловой или круговой скоростью.
Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна #969 = 360°f.
Итак, мы пришли к выводу, что #969 = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2 #960 радиан, где #960 =3,14. Таким образом, окончательно получим #969 = 2 #960 f. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.
Наш сайт в Facebook:
В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами.
Определение
Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.
Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).
Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:
Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.
Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).
Происхождение
Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.
Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об , в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.
Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.
Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.
Формулы для расчета постоянного тока
Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по для участка цепи или для полной цепи:
E=I/(R+r)
Мощность также просто рассчитываются:
Формулы для расчета переменного тока
В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления.
Рекомендуем также
Группа продуктовЯзык: Валюта: МенюРекомендованная статья Логин и пароль по умолчанию администратора систем видеонаблюдения Бюллетень E-mail |
|
ПОДВЕСНОЙ ШКАФ RACK EPRADO-R19-6U/600 Нетто: 132.79 EUR ОДНОМОДОВЫЙ МЕДИАКОНВЕРТОР OMG1-SM КОМПЛЕКТ TXRX Нетто: 58.38 EUR АНТИВАНДАЛЬНАЯ КАМЕРАIP IPC-HDBW2231E-S-0280B-S2 - 1080p 2.8 mm DAHUA Нетто: 135.89 EUR ВОЛОКОННО-ОПТИЧЕСКИЙ ПЕРЕКЛЮЧАТЕЛЬ MT-524 Нетто: 34.00 EUR ОДНОМОДОВЫЙ МЕДИАКОНВЕРТОР КОМПЛЕКТ TXRX M-207M ULTIMODE Нетто: 37.03 EUR AHD, HD-CVI, HD-TVI, PAL-КАМЕРА APTI-H50V2-36W 2Mpx / 5Mpx 3.6 mm Нетто: 29.17 EUR АНТИВАНДАЛЬНАЯ КАМЕРАAHD, HD-CVI, HD-TVI, PAL APTI-H50V3-2812W 2Mpx / 5Mpx 2.8 ... 12 mm Нетто: 51.53 EUR БЛОК ПИТАНИЯ 12V/1.5A/5.5 Нетто: 4.47 EUR AHD, HD-CVI, HD-TVI, PAL-КАМЕРА APTI-H50PV2-28W 2Mpx / 5Mpx 2.8 mm Нетто: 23.79 EUR |
| Fluke
Talk to a Fluke sales expert
Связаться с Fluke по вопросам обслуживания, технической поддержки и другим вопросам»What is your favorite color?
Имя *
Фамилия *
Электронная почта *
Компания *
Номер телефона *
Страна * - Пожалуйста, выберите значение -United States (Estados Unidos)CanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAzerbaijanBahamasBahrainBangladeshBarbadosБеларусь (Belarus)Belgien/Belgique (Belgium)BelizeBeninBermudaBhutanBoliviaBonaireBosnia and HerzegovinaBouvet IslandBotswanaBrasil (Brazil)British Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral African RepublicČeská republika (Czech Republic)ChadChile中国 (China)Christmas IslandCittà Di VaticanCocos (Keeling) IslandsCook IslandsColombiaComorosCongoThe Democratic Republic of CongoCosta RicaCroatiaCyprusCôte D'IvoireDanmark (Denmark)Deutschland (Germany)DjiboutiDominicaEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEspaña (Spain)EstoniaEthiopiaFaroese FøroyarFijiFranceFrench Southern TerritoriesFrench GuianaGabonGambiaGeorgiaGhanaGilbralterGreeceGreenlandGrenadaGuatemalaGuadeloupeGuam (USA)GuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelIslas MalvinasItalia (Italy)Jamaica日本 (Japan)JordanKazakhstanKenyaKiribati대한민국 (Korea Republic of)KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMéxico (Mexico)MicronesiaMoldovaMonacoMongoliaMontenegroMonserratMoroccoMozambiqueMyanmarNamibiaNauruNederland (Netherlands)Netherlands AntillesNepalNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorge (Norway)Norfolk IslandNorthern Mariana IslandsOmanÖsterreich (Austria)PakistanPalauPalestinePanamaPapua New GuineaParaguayPerú (Peru)PhilippinesPitcairn IslandPuerto RicoРоссия (Russia)Polska (Poland)Polynesia (French)PortugalQatarRepública Dominicana (Dominican Republic)RéunionRomânia (Romania)RwandaSaint HelenaSaint Pierre and MiquelonSaint Kitts and NevisSaint LuciaSaint Vincent and The GrenadinesSan MarinoSao Tome and PrincipeSaudi ArabiaSchweiz (Switzerland)SenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and The South Sandwich IslandsSouth SudanSri LankaSudanSuomi (Finland)SurinameSvalbard and Jan MayenSverige (Sweden)SwazilandTaiwanTajikistanTanzaniaThailandTimor-LesteTokelauTogoTongaTrinidad and TobagoTunisiaTürkiye (Turkey)TurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVirgin Islands (British)Virgin Islands (USA)VenezuelaVietnamWallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe
Почтовый индекс *
Интересующие приборы
iGLastMSCRMCampaignID
?Отмечая галочкой этот пункт, я даю свое согласие на получение маркетинговых материалов и специальных предложений по электронной почте от Fluke Electronics Corporation, действующей от лица компании Fluke Industrial или ее партнеров в соответствии с политикой конфиденциальности.
consentLanguage
Политика конфиденциальностикак HVDC спасли переменный ток / Хабр
В мире, казалось бы, победившего переменного тока назревает — нет, не революция, но органичная эволюция: постоянный ток не просто возвращается, а претендует на лавры победителя. Инвестиции в возобновляемые источники энергии и трансграничная передача электричества сделали высоковольтные сети постоянного тока как никогда актуальными. В этом посте мы рассказываем, почему постоянный ток уступил току переменному и как спустя век после «Войны токов» постоянный ток взял реванш.
Источник: ShutterstockПостоянный ток — это основа современного технологического общества: вся полупроводниковая электроника, работающая от сети или аккумуляторов, использует постоянный ток, с его помощью добывают чистый алюминий, магний, медь и другие вещества. В бортовой сети автомобиля тоже постоянный ток, как и в электрической передаче дизельных судов. Ну и конечно электропоезда: трамваи, метро и некоторые электровозы питаются постоянным током. И космос: все рукотворные космические объекты функционируют исключительно благодаря постоянному току от батарей или РИТЭГов.
Помимо всего этого, есть еще одна область, где постоянный ток если не незаменим, то по крайней мере значительно эффективнее переменнее тока, — высоковольтные линии для передачи высокой мощности. Линии постоянного тока (HVDC, High-voltage direct current) еще век назад стали спасением высоковольтных линий переменного тока (HVAC, High-voltage alternating current). Если бы не постоянный ток, электричество в наших розетках было бы куда дороже и исчезало чаще, чем это происходит сейчас. Давайте разберемся в этой интересной истории «взаимовыручки».
Ирония судьбы постоянного тока
Чтобы оценить всю иронию ситуации с возвращением постоянного тока в высоковольтные линии электропередач, нужно вспомнить о событиях «Войны токов» — сражения апологетов постоянного тока в лице изобретателя и бизнесмена Томаса Эдисона и тока переменного, преимущества которого осознавал предприниматель Джордж Вестингауз. Вкратце напомним о том, как постоянный ток проиграл битву за то, чтобы стать основой мирового энергоснабжения.
После того, как человечество подчинило себе электричество и научилось извлекать из него пользу в промышленности, дальновидные бизнесмены смекнули, что на электрификации городов в перспективе можно сколотить не просто капитал, а фантастическое состояние. Изобретатель Томас Эдисон отлично умел монетизировать свой талант инноватора и зарабатывал не столько на собственных изобретениях, сколько на усовершенствовании чужих идей. Одним из примеров такой успешной «доводки» стало создание лампы накаливания, которая появилась благодаря попавшем в руки Эдисона дуговым лампам с угольными электродами. Такие лампы хоть и давали свет, но в качестве постоянных источников освещения не годились — в те времена угольные дуговые лампы работали от силы несколько часов, а включить их можно было только один раз.

Усовершенствовав конструкцию и создав свою знаменитую лампу накаливания, которая могла работать 40 часов, а после доработки 1200 часов, Эдисон осознал, что его лампочка может стать основой систем освещения городов и помещений — давая более яркий свет по сравнению со свечами и газовыми фонарями, лампы накаливания имели меньшую стоимость, не чадили, не жгли кислород в помещениях, а замены требовали реже, чем те же свечи. Производством ламп занялось предприятие Edison Electric Light, а генераторов постоянного тока — Edison General Electric. Продавая лампы ниже себестоимости, Эдисон завоевал рынок освещения, а для первых потребителей начал строить энергосети в Лондоне и Нью-Йорке.
Лампа накаливания может работать и с переменным, и с постоянным током, но Эдисон сделал выбор в пользу постоянного тока. Причина этого решения очень тривиальна и далека от физики. Как мы говорили, Эдисон был не только изобретателем, но и очень предприимчивым бизнесменом. В электричестве он видел не только способ дешевого освещения городов, но и возможность для модернизации промышленности за счет внедрения электрической тяги. Существовавшие в то время электромоторы работали только на постоянном токе.
К тому же для заработка на поставках электричества надо было как-то измерять потребление каждого абонента. Эдисон создал индивидуальный счетчик, представлявший собой резервуар с электролитом и пластиной, на которой под действием проходящего тока оседала медь — каждый месяц пластину взвешивали и по разнице массы вычисляли потребление электроэнергии. Такой счетчик работал только с постоянным током.

Но были у постоянного тока и нерешенные проблемы, главная из которых — невозможность передачи высокой мощности на большие (более 2 км) расстояния. Чтобы передать высокую мощность, которая необходима для электроснабжения предприятия или системы освещения города, в электросети нужно повысить либо ток, либо напряжение (мощность, напомним, равна произведению напряжения и силы тока). Но в конце XIX века не было способов менять напряжение постоянного тока. Выпускаемые в США электроприборы работали от напряжения 110 В, поэтому электростанции Эдисона, работавшие на паровых генераторах, должны были посылать в сеть именно 110 В.
Оставалось управлять силой тока. При повышении тока часть энергии уходит на нагрев проводов (с высоким напряжением такой проблемы нет). Для снижения потерь и нагрева нужно уменьшать сопротивление, увеличивая диаметр проводника или применяя материалы с хорошей электропроводностью, например, медь. И всё равно потери будут расти в зависимости от длины кабеля.
Чтобы сократить длину проводника до допустимой, потребители должны были располагаться не далее, чем в 1,5-2 км от электростанции, иначе мощность в сети падала до неприемлемых значений. Например, на 56-километровой линии между французскими городами Крей и Париж потери достигали 45%. Как Эдисон ни бился с проблемой потерь в сетях постоянного тока, решить ему ее так и не удалось. Единственным выходом было только строительство маломощных электростанций рядом с потребителями. Тогда это не казалось надругательством над экологией и жителями — именно такие станции и строила компания Эдисона. Первая из них была построена на Пёрл-стрит на Манхэттене в Нью-Йорке в 1882 году, в том же году началась прокладка подземных кабелей сети постоянного тока с напряжением 110 В.

Ошибочность своего выбора Томас Эдисон осознал, хотя и не признал публично, когда его конкурент по электрическому бизнесу — Джордж Вестингауз, — начал вкладываться в строительство электростанций и сетей переменного тока, имевших серьезные преимущества перед сетями тока постоянного. Благодаря уже изобретенным к тому моменту трансформаторам напряжение переменного тока можно было без труда повышать и понижать. Трансформаторы решали проблему передачи высокой мощности, ведь вместо силы тока можно было просто увеличить напряжение, для передачи которого не требовались толстые провода из дорогой меди.
Таким образом сети Вестингауза могли передавать очень высокую мощность по дешевым кабелям меньшего диаметра и при этом практически без потерь. Это доказывает пример 175-километровой сети переменного тока между немецким городом Лауффен-ам-Неккар и Франкфуртом — ее КПД составил 80,9% после запуска в 1891 году и 96% после модернизации — несравнимо выше 45% на втрое меньшей дистанции у сети постоянного тока.

У сетей переменного тока не было жесткого ограничения на длину. Благодаря этому стало возможным строительство гидроэлектростанций, электричество с которых могло передаваться в крупные города, расположенные за десятки и даже сотни километров от места выработки. А гидроэлектростанция — это куда более значимый и прибыльный проект, чем маломощная угольная станция внутри города.
«Война токов» продолжилась некрасивой пиар-кампанией Эдисона против переменного тока (показана, в частности в художественном фильме 2017 года «Война токов», или The Current War, режиссёра А. Гомес-Рехона), судебной и законотворческой волокитой против Вестингауза и постепенной потерей позиций бизнеса Эдисона под давлением всё более популярных сетей переменного тока. Последняя эдисоновская электростанция постоянного тока прекратила свою работу в 1981 году, что же до потребителей, в Сан-Франциско до сих пор сотни объектов (в основном старинные лифты) используют постоянный ток через выпрямители переменного тока. Но для нас это уже не так важно.
Постоянный ток спасает переменный
Всего через несколько лет после начала масштабного строительства электростанций и сетей переменного тока выяснилось, что переменный ток имеет проблемы при передаче энергии… на большие расстояния! Коронный разряд в высоковольтных воздушных линиях, на который может приходиться до половины потерь, поверхностный эффект, при котором переменный ток протекает по проводнику неравномерно и из-за этого требует проводники бо́льшего диаметра, реактивная мощность из-за высокого емкостного сопротивление подводных кабелей, «съедавшая» почти 100% переменного тока уже через 50 км — всё это вызывало потери процентов и десятков процентов мощности в первых магистральных сетях переменного тока.
Утечки на больших расстояниях — это во-первых. А во-вторых, объединение энергосетей переменного тока требовало идеальной синхронизации генераторов, расположенных в разных частях страны. При отсутствии синхронизации генератор в лучшем случае не будет подавать ток в сеть, в худшем — произойдет короткое замыкание.
Спасением высоковольтных сетей переменного тока стали высоковольтные сети постоянного тока, избавленные от некоторых недостатков конкурента. Постоянный ток не создает поверхностный эффект в проводнике и потому использует всю площадь сечения проводника с максимальной эффективностью (это уменьшает диаметр и стоимость проводов). В цепях постоянного тока нет реактивной мощности, поэтому в подводных кабелях с высокой емкостью потерь не происходит.

Вырисовывалась замечательная синергия: электростанции и потребители используют переменный ток, но для его транспортировки на сотни километров применяются сети постоянного тока. Оставалась лишь одна «пустяковая» проблема — как превратить переменный ток в постоянный и обратно?
В конце XIX века швейцарский инженер Рене Тюри предложил использовать для соединения сетей с разным типом тока систему «мотор-генератор», в которой на одном конце сети переменный ток вращал мотор, приводящий в действие генератор постоянного тока, а на другом конце постоянный ток в свою очередь вращал мотор с генератором переменного тока. Идея, гениальная в своей простоте, но с невысоким КПД — двойное преобразование за счет моторов и генераторов «съедало» часть мощности. Тем не менее, других решений, кроме системы Тюри, не было, поэтому с 1883 года началось строительство магистральных сетей постоянного тока с машинами Тюри, связывающих крупные электростанции и города в Европе.

В 1902 году американец Питер Купер-Хьюитт изобрел ртутно-дуговой выпрямитель — несложное устройство для превращения переменного тока в постоянный. Оригинальный выпрямитель Купера-Хьюитта представлял собой замысловатую стеклянную колбу с выходящими из нее электродами, дно которой было заполнено ртутью. В работе выпрямитель выглядит очень эффектно. Впрочем, из-за хрупкости колбы стекло в выпрямителе вскоре заменили на металл.
Работа ртутно-дуговых выпрямителей завораживает. Увы, но сейчас полюбоваться такой красотой можно разве что в музеях — ртутные выпрямители давно не используются, да и те, что остались, сделаны из металла.
Ртутные выпрямители дали толчок к развитию высоковольтных сетей постоянного тока — вместо громоздких и ненадежных машин системы Тюри достаточно было установить выпрямители, в числе недостатков которых была только потенциальная токсичность при разгерметизации и необходимость в хорошем охлаждении из-за тепловых потерь. КПД устройства достигал 98-99%.
На смену ртутным выпрямителям были созданы газотроны и тиратроны (1940-е), полевые транзисторы с изолированным затвором MOSFET и полярные транзисторы с изолированным затвором IGBT (1959 год), запираемые тиристоры GTO (1962 год) — более совершенные, компактные и надежные преобразователи.

Когда каждый процент на счету
Несмотря на заметный прогресс в области выпрямления тока, оборудование для преобразования переменного тока в постоянный и обратно до сих пор стоит очень больших денег. Настолько больших, что строительство сетей переменного тока, даже с учетом повышенного расхода материала для проводов, выходит сильно дешевле. Вне зависимости от длины линии, стартовая цена высоковольтной магистрали постоянного тока обязательно включает стоимость двух преобразователей в начале и конце линии — габаритных и очень дорогих устройств, производимых всего несколькими компаниями в мире, в числе которых и Toshiba. На это оборудование приходится до половины стоимости сети.
Но по мере увеличения длины магистрали стоимость линии на переменном токе растет быстрее, чем на токе постоянном. Виной тому сложность магистрали HVAC — для передачи аналогичной мощности HVDC нужно вдвое меньше проводников меньшего диаметра, а значит, вдвое меньше опор, которые и сами стоят немало, и требуют крайне дорогостоящего монтажа. При длине линии около 600 км стоимость HVDC и HVAC равна, но на больших расстояниях, порядка 2000 км, HVDC выходит сильно дешевле, чем HVAC, примерно на 30-40%, а это сотни миллионов долларов экономии.

На каждые 1000 км линии потери в HVDC составляют 2-3%, а самое современное оборудование позволяет снизить этот параметр до 1%. Потери в HVAC могут достигать 6%. Даже в самых эффективных сетях переменного тока с самым лучшим оборудованием потери будут на 30-40% больше, чем в HVDC Несколько процентов от полной мощности — вроде бы терпимая ерунда? Когда речь идет о сетях, передающих несколько гигаватт, каждый процент превращается в десятки потраченных впустую мегаватт, которые можно было бы использовать для электроснабжения маленького города. Не говоря уже о потерянной прибыли.
Прошлое, настоящее и будущее HVDC

HVDC является оптимальным решением для связи сетей стран, разделенных морем. Так ветка между итальянским городом Чепагатти и муниципалитетом Котор в Черногории, которая экспортирует электроэнергию в Италию, пролегает по дну Адриатического моря — используй эта 400-километровая ветка переменный ток, емкостные потери в кабеле были бы слишком большими, и это бы удорожало стоимость электроэнергии для Италии. Кстати, в строительстве этой линии участвовала Toshiba: мы поставили преобразователи напряжения.
Но всё же больше всего Toshiba поучаствовала в строительстве HVDC-сетей в Японии, где исторически сложилась очень необычная ситуация: западная часть страны эксплуатирует ток с частотой 60 Гц, а восточная — 50 Гц. Эта коллизия, которую уже невозможно устранить, возникла еще в конце XIX века, когда Япония одновременно закупила генераторы в Европе и США с выходной частотой тока 50 Гц и 60 Гц соответственно. Результатом поспешного решения далекого прошлого стала вынужденная необходимость строить HVDC-ветки для соединения энергосистем разных частей страны.
HVDC-сети и вставки постоянного тока в Японии помогала строить Toshiba. Первой стала вставка для соединения внутри страны сетей на 50 Гц и 60 Гц, построенная в 1977 году при участии Toshiba. Ее мощность на момент постройки составила 600 МВт. К 2021 году Toshiba провела глубокую модернизацию вставки, увеличив ее мощность на 900 МВт и уменьшив число используемых тиристоров, что позволило немного сэкономить на оборудовании.

Первая высоковольтная линия постоянного тока, длиною 193 км, связала острова Хоккайдо и Хонсю в 1979 году. Сеть передает 300 МВт с напряжением 250 кВ. В 2000 году мы поставили тиристорные конверторы для мощнейшей подводной HVDC-линии между островами Сикоку и Хонсю — ветка передает 1400 МВт. На момент строительства линии в ней использовались самые крупные в мире тиристоры, которые в следующий раз применялись только 10 лет спустя при постройке китайской HVDC Lingbao 2.
Третья японская HVDC, построенная между островами Хоккайдо и Хонсю, была запущена совсем недавно — в 2019 году. Toshiba выступила главным поставщиком преобразователей на полярных транзисторах с изолированными затворами (IGBT).
На сегодняшний день в мире построено более 150 сетей HVDC и 50 вставок постоянного тока. Среди них есть как объекты, построенные в 1970-х годах прошлого века, так и совсем новые. Около 10 HVDC в Европе находятся в стадии строительства прямо сейчас с планируемым сроком запуска 2021-2025 годы. Строящиеся линии соединяют некоторые европейские страны с Великобританией (для выравнивания нагрузки на европейскую энергосеть), тянуть до которой подводный HVAC бессмысленно.
Однако интерес к HVDC-сетям в последние годы растет, и причина тому — «зеленая» энергетика. В отличие от угольных, газовых и атомных электростанций, возобновляемые источники энергии имеют очень четкую географию: в одних областях больше солнечных дней, в других чаще и стабильней дует ветер.
В Германии около 63 ГВт установленной мощности приходится на ветряные электростанции, 7,8 ГВт из которых — оффшорные станции, расположенные в Северном море в десятках километров от берега. Если нужно передать гигаватты мощности от «ветряков» по кабелям, лежащим под водой, лучшим выбором будет, как вы помните, сеть постоянного тока.

В Австралии компания Sun Cable готовится приступить к постройке гигантской фотовольтаической (солнечной) электростанции, мощностью 14 ГВт. Причем электроэнергию с нее будут потреблять не в Австралии, а в Сингапуре, куда она будет поступать по подводной HVDC-сети.
Чем больше в мире будет появляться масштабных проектов, связанных с возобновляемыми источниками энергии, тем сильнее будут востребованы высоковольтные линии постоянного тока. Не стоит фантазировать о том, что однажды мечты Эдисона осуществятся и в наших розетках переменное напряжение сменится постоянным, — этого не будет, пожалуй, никогда. Тем лучше, что переменный и постоянный токи пришли к органичному сосуществованию и взаимовыручке в деле электроснабжения планеты.
Чем отличаются Электроды Постоянного и Переменного тока
Электроды постоянного и переменного тока внешне не отличаются. Но с завода уже указано для каких токов они разработаны, а именно это стержень электрода и покрытие, полярности и положения при которых можно выполнять сварку,рекомедуемый ток при сварке тех или иных металлов. В чем основные различия переменного и постоянного тока. В том что на электрод при сварке подается ток либо переменно с какой либо частотой, а именно это 50 герц либо постоянно. Возьмем к примеру электроды уони. Они предназначены для постоянного тока. Если взять и попробовать варить переменным то они будут прилипать либо дуга будет гулять или вовсе не будет стабильной дуги.
Давайте рассмотрим ток постоянный и переменный. Буду начинать с переменного так как это будет проще всего понять.
И так как у на работает переменный ток и постоянный при сварке электродом. Я нарисую наглядно.
А теперь посмотрим как поступает к нам переменный ток в дома. Все знают что есть фаза и есть ноль. Ноль это как минус но не совсем так. Ну да ладно рассмотрим фазу переменного тока и как она работает. Переменный ток то он есть то его нет то он опять есть.
Как видим переменный ток то в одну сторону возрастает то в другую (красная линия показано как возрастает то в одну то в другую) то есть ток меняется. Вот почему при сварке электродами переменным током разбрызгивания больше. Ну а постоянный ток тоже как и переменный только пропустив через выпрямитель ( поэтому его так называют потому что он выпрямляет ток который на графике) мы получаем несколько переменных токов которые работают синхронно и образую постоянный ток.
Из этого можно сделать вывод что качественная сварка получится при сварке постоянным током. Наверное не всем понятно что это на графике изображено. Отвечаю на вопрос чем отличаются электроды постоянного тока от переменного. Например электродами мр-3с можно варить как переменным так и постоянным током любой полярности. А вот уони например только постоянным и только лишь допускается обратной полярностью. Скажу от себя берем электроды для переменного тока и варим постоянным и ни чего не боимся. Многими марками электродов можно варить постоянным током, а переменным нужно смотреть. Теперь
Сварочные аппараты TIG DC, TIG AC/DC - ТОЧЕЧНЫЕ, ИМПУЛЬСНЫЕ | Наборы
Аппараты для сварки TIG и комплекты
Мы предлагаем широкий выбор устройств, тщательно отобранных нами с точки зрения функциональности и надежности. Есть модели как для профессионалов, так и для любителей. У нас вы можете найти только сварочные аппараты, а также сварочные комплекты, оснащенные необходимыми аксессуарами.
Преимущества аппаратов для сварки TIG
Сварка TIGстановится все более популярной.Цена оборудования не является чрезмерной, а работа с ним не представляет проблемы даже для начинающих сварщиков. Достаточно прочитать самые важные правила и перейти к обучению и практике.
Различные типы металлов имеют немного разные требования к сварке. Поэтому необходимо использовать отдельные методы TIG. Сварка постоянным током (DC) подходит для всех марок стали и цветных металлов. С другой стороны, сварка переменным током (AC) применяется при работе с алюминием и его сплавами.
К преимуществам аппарата для сварки TIG переменным и постоянным током относятся:
- высокое качество сварки,
- возможна сварка без дополнительного присадочного металла,
- сварка во всех положениях,
- сварка элементов толщиной менее 1 мм до нескольких десятков мм.
Аппараты для сварки ВИГ с импульсом
Предлагаем современные аппараты с функцией Pulse, которая особенно удобна при сварке тонких деталей, например, из нержавеющей или кислотостойкой стали. Заключается в сварке двумя заданными токами - повышенным и низшим значением, которое изменяется при сварке с заданной периодичностью. Более современные аппараты для сварки TIG позволяют полностью регулировать параметры импульса, такие как: базовый ток импульса, пиковый ток, ширина и частота импульса. Описанная технология снижает количество тепла, вводимого в свариваемый материал, и позволяет полностью контролировать процесс сварки. Предотвращает локальный перегрев материала и минимизирует термическую деформацию.
Лучший сварочный аппарат TIG переменного / постоянного тока
Выбор подходящего оборудования может быть довольно сложным, особенно если вы новичок в сварке. Интернет переполнен специализированными терминами и схемами, что не всегда облегчает задачу. Тогда стоит позвонить нам – мы не боимся трудных разговоров и с удовольствием объясним различия между типами сварочных аппаратов. На протяжении многих лет мы подбираем устройства для удовлетворения индивидуальных потребностей наших клиентов.
В прошлом высококачественные сварочные аппараты TIG были тяжелыми и громоздкими, что затрудняло изменение их позиции как специалистами, так и любителями домашнего строительства. Сегодня в нашем магазине вы найдете модели, выполненные на основе современных технологий, легкие и удобные. Сварочные аппараты мощностью до 200 А оснащены удобными рукоятками, более мощные промышленные - опорными катками. Для клиентов, которым важна высокая мобильность аппарата, рекомендуем выбирать сварочный аппарат без системы охлаждения — тогда максимальный сварочный ток будет несколько ниже, но все оборудование будет намного легче.
Функциональная панель так же важна, как и выходные параметры.Именно он позволяет нам точно управлять настройками. Мы предлагаем сварочные аппараты с традиционными ручками, с мягкой панелью и модели с ЖК-дисплеем. Каждый пользователь найдет для себя идеальный сварочный аппарат.
Марки сварочных аппаратов TIG
Мы предлагаем сварочное оборудование многих известных производителей, имеющих соответствующие сертификаты качества и постоянно растущее число довольных пользователей. Мы хотим, чтобы каждый покупатель нашел что-то для себя в различных категориях магазина, поэтому доступные модели сварочных аппаратов TIG различаются по цене, области применения и бренду.Наиболее часто выбирают производителей сварочных аппаратов: Magnum, Sherman, Weldman и Ideal.
Сварочные наборы
В эту категорию также входят сварочные комплекты, оснащенные соответствующими принадлежностями для сварки TIG. Стоимость пакета ниже, чем стоимость товаров, приобретаемых по отдельности. Это отличный выбор для начинающих сварщиков, тогда большая часть необходимого оборудования будет упакована вместе. В комплект может входить:
- газовый баллон,
- газовый регулятор,
- перчатки,
- козырек,
- доп.детали к горелке (рукава, форсунки),
- вольфрамовые электроды,
- сварочная проволока.
Какой аппарат для сварки TIG? Введение в метод.
Многие из вас стоят перед выбором, стоит ли выбирать сварочный аппарат TIG, и если да, то какой именно. Прежде чем мы попытаемся помочь вам найти ответ на этот вопрос, давайте перейдем к нескольким вводным словам о методе сварки TIG.
Этот метод набирает все большую популярность. Фактически, он был очень популярен в промышленном и профессиональном использовании в течение многих лет, и среди любителей также заметна тенденция к росту.
Сварка TIGпроисходит в среде инертного газа, чаще всего это чистый аргон, гелий или смесь газов. Источником тепла является сварочная дуга, которая горит между вольфрамовым (неплавящимся) электродом и заготовкой. Расплавленный основной материал образует сварочную ванну, которая при затвердевании образует сварной шов. В подавляющем большинстве случаев сварка TIG требует добавления сварочной проволоки в виде круглых стержней в сварочную ванну. Связующее, которое мы добавляем, должно быть похоже по составу на свариваемый материал.Благодаря этому мы используем различные проволоки, такие как: стальная проволока СГ3, алюминиевая проволока, нержавеющая или кислотоупорная проволока.
Для сварки TIGтребуется сварочный аппарат TIG, который следует выбирать в соответствии с потребностями сварщика.
Типы устройств и их применение.
Основная классификация источников питания для сварки TIG:
- Аппараты для сварки ВИГ постоянным током - выход постоянного тока,
- Сварочные аппараты TIG AC/DC - переменный ток или постоянный ток на выходе.
Откуда взялось это деление? Это связано с типом материала, который можно сваривать определенным током. Итак, постоянным током мы можем сваривать углеродистую, нержавеющую, кислотоупорную и другие виды стали. Мы также можем сваривать титановые сплавы. Однако для сварки алюминия и его сплавов необходим источник переменного тока. Почему? Поверхность алюминия покрыта оксидным слоем, который приходится прокалывать при сварке TIG. При сварке постоянным током такой возможности у нас нет, поэтому сваривать нужно переменным током.
На что следует обратить внимание при выборе сварочного аппарата?
Современные аппараты для сварки TIG постоянным током изготавливаются по инверторной технологии. Они используются как в промышленности, так и в домашних мастерских. Их чаще всего используют для стационарной сварки элементов из конструкционной, нержавеющей и кислотоупорной стали. Они также широко используются при сварке в полевых условиях, например, элементов из кислотостойкой стали в пищевой промышленности, при сварке перил и других элементов.
Аппарат для сварки TIG на постоянном токе должен иметь все необходимые функции, которые потребуются пользователю. Для простых сварочных работ все, что вам нужно, это сварочный аппарат с такими функциями, как наклон вниз, подача газа и простой импульс. Примером такой модели является Magnum THF 201P, который продается уже несколько лет. Также стоит рассмотреть более обширный источник. Например, сварочный аппарат TIG с полной формой волны тока и полной импульсной модуляцией. К популярным и надежным моделям относятся Sherman DIGITIG 200 DC и Magnum THF 206P.
Сварочный аппарат для алюминия, как выбрать?
Если вы ищете сварочный аппарат для алюминия, ваш выбор, вероятно, будет сварочным аппаратом для сварки TIG на переменном/постоянном токе. В настоящее время в наличии очень много моделей и можно выбрать устройство, которое будет практически на 100% удовлетворять потребности данного пользователя. Однако для того, чтобы сделать правильный выбор, необходимо потратить некоторое время на анализ или обратиться за консультацией к специалистам.
При выборе сварочного аппарата TIG AC/DC следует руководствоваться в первую очередь его функциональностью и, конечно же, бюджетом, выделяемым на инвестиции.При выборе сварочного аппарата обращайте внимание на такие параметры, как: мощность, диапазон сварочных токов, форма волны ВИГ, возможность регулировки частоты переменного тока, возможность и диапазон регулировки баланса переменного тока, функция сварки ВИГ с импульсом и другие дополнительные функции. что может быть полезно для нас.
Сварочный ток в аппарате для сварки TIG и толщина материала.
При выборе сварочного аппарата TIG нельзя забывать о толщине свариваемых материалов. Предполагается, что на 1 мм толщины материала нам нужно от 40А до 50А.Поэтому популярные сварочные аппараты TIG со сварочным током до 200 А подходят для сварки материалов до 5 мм. Конечно, если материал скошен, это предельное значение увеличивается. Важная информация для всех, кто ищет сварщика для ремонта дисков. Сварщик TIG для сварки алюминиевых дисков должен производить сварку током от 250 ампер и выше. Оптимальным выбором будут сварочные аппараты со сварочным током выше 300 ампер с горелкой с жидкостным охлаждением. Одним из таких источников является Sherman DIGITIG 315 MultiPro AC/DC.
Мы консультируем годами, поэтому вы можете связаться с нами сегодня!
.Управление технической инспекции - Типы зарядки
Типы зарядки электромобилей в Польше
Процессы зарядки электромобилей подробно описаны в стандартах IEC 61851 и IEC 62196. Стандарты определяют следующие виды зарядки автомобильных аккумуляторов переменным током (AC) и постоянным током (DC).
Типы зарядки переменным током
При зарядке переменным током преобразователь переменного тока в постоянный находится в электромобиле, где переменный ток преобразуется в постоянный для зарядки аккумуляторов.Мы различаем следующие системы зарядки переменного тока.
ТИП 1 (AC)
Разъем TYPE 1 (AC) позволяет заряжать электромобили однофазным или переменным током. Это вид зарядки переменным током не более 16 А и напряжением не более 250 В для однофазного тока и 480 В для силового тока.
Этот тип в основном распространен в США и Японии, мало в Европе.В этом разъеме 3 контакта: 2-х фазные L1 и L2 и PE, т.к. в США для нужд более мощных устройств используется двухфазное питание с напряжением 240 В, со сдвинутыми фазами на половину полного угла без нейтрального провода. Отсюда максимальная зарядная мощность, которую можно получить в этих условиях, составляет 7,68 кВт (2 х 240 В * 16 А), а в случае однофазного тока - 3,84 кВт (240 В * 16 А).
Автомобильный разъем ТИПА 1 (АС) не подлежит техническому осмотру в Техническом осмотре.
Источник: charin warinev.org 17/12/2018
Тип 2 (AC)
Разъект 2 (AC) позволяет разъединять оба сэрприпа зарядка электромобилей и трехфазная. Это широко распространенный в Европе разъем, определенный стандартом IEC 62196-2
. Согласно стандарту IEC 61851, это тип зарядки переменным током не более 32 А и напряжением не более 250 В. для однофазного тока и 480 В для трехфазного тока.
Принимая во внимание вышеизложенное, в польских условиях максимальная мощность зарядки однофазным переменным током составляет 7,36 кВт, что соответствует напряжению 230 В и силе тока 32 А (230 В x 32 А = 7,36 кВт).
Мощность зарядки трехфазным переменным током составляет 22 кВт, что соответствует напряжению 3 x 230 В и току 32 А (3 x 230 В x 32 А = 22,08 кВт)
Разъем TYPE 2 (AC) содержит 5 контактов L1, L2 , L3, N и PE и 2 контакта управления для связи между пунктом зарядки и электромобилем.
Source: CharIN charinev.org 17/12/2018
DC charging types
In DC charging, the AC / DC is converted in the charger and therefore into the постоянный ток автомобиля применяется напрямую.
Мы различаем следующие системы зарядки постоянным током.
TYPE 1 (DC) Combo 1
Разъем TYPE 1 (DC) позволяет заряжать электромобили постоянным током.Это разъем, аналогичный соединению TYPE 1 (AC), с тем отличием, что он включает в себя ниже дополнительный модуль с двумя поляризованными контактами постоянного тока «+» и «-». Во время зарядки используются контакты постоянного тока, контакт PE и коммуникационные разъемы. Как и разъем TYPE 1 (AC), этот разъем используется в США.
Источник: charin warinev.org 17/12/2018
Тип 2 (DC) Комбо 2 версия
9002Тип 2 (DC) Connector, также известный как "Combo 2" или CCS (Combined Charging System) позволяет заряжать электромобили постоянным током.Этот разъем отличается от разъема TYPE 2 (AC) тем, что включает в себя дополнительный нижний модуль питания постоянным током с поляризацией «+» и «-», при зарядке используются контакты постоянного тока, контакт PE и разъемы связи. Как и в случае с разъемом TYPE 2 (AC), этот тип широко распространен в Европе.
С учетом нагрузочных параметров контактов соединения постоянного тока эти контакты за счет силы тока и напряжения могут достигать максимальной зарядной мощности до 500 кВт.
Источник: ЧарИН чаринев.org 17/12/2018
CHadeMO
Разъем, используемый в качестве стандартного в Японии для зарядки электромобилей постоянным током. Данную систему используют такие производители автомобилей, как: Kia, Mazda, Nissan, Honda, Subaru, а также Citroen и Peugeot.
Интересным фактом является то, что разъем позволяет передавать энергию в двух направлениях между электромобилем и зарядным устройством, реализуя стандарт V2H (двусторонний поток энергии дом-автомобиль) и V2G (двусторонний поток энергии автомобиль-электросеть). .
Источник: chademo.com 17.12.2018
BG/T DC
Разъем, используемый в качестве стандартного в Японии для зарядки электромобилей постоянным током. Эта система используется китайскими производителями автомобилей, такими как: Bjev, BYD, ZT. Разъем, как и CHadeMO, позволяет энергии течь в двух направлениях между электромобилем и зарядным устройством.
Источник: chademo.com 17.12.2018
Система связи между электромобилем и зарядной станцией (далее: зарядное устройство)
5 2 3 электромобили также имеют контакты связи.В зависимости от типа разъема управление осуществляется через линию связи (PLC), как в случае TYPE 1, TYPE 2 и Combo 2, или через последовательную коммуникационную шину (CAN), например, в стандарте CHAdeMO и GB/T DC. .
Функцию управления в стандарте Combo 2 выполняют контакты PP (сигнал приближения) и CP (сигнал управления), а также контакт PN, который, кроме того, что защищает источник питания, выполняет еще и функцию заземления (обычно известный как: земля) для контактов управления.
3 электромобили также имеют контакты связи.В зависимости от типа разъема управление осуществляется через линию связи (PLC), как в случае TYPE 1, TYPE 2 и Combo 2, или через последовательную коммуникационную шину (CAN), например, в стандарте CHAdeMO и GB/T DC. .
Функцию управления в стандарте Combo 2 выполняют контакты PP (сигнал приближения) и CP (сигнал управления), а также контакт PN, который, кроме того, что защищает источник питания, выполняет еще и функцию заземления (обычно известный как: земля) для контактов управления.
В стандарте CHAdeMO и GB/T DC у нас целых семь управляющих контактов.Роль управляющих контактов в обеспечении связи между транспортным средством и зарядным устройством заключается, в частности, в безопасность пользователей. На основе изменения сопротивления в течение всего процесса зарядки определяется, какой оптимальный зарядный ток должен подаваться на транспортное средство при подключении и отключении транспортного средства от зарядного устройства, когда процесс зарядки начался и когда он закончился.
.
Инвертор - принцип работы, типы, применение и конструкция
Содержание (нажмите для быстрого перехода)
Инвертор что это такое?
F ( Power Inverter, German Wechselrichter ) используется для преобразования Direct Current (DC) к переменному току (AC) , с актуальной частотой. напряжения в электрооборудовании.В противоположной ситуации, т.е. когда мы хотим преобразовать переменный ток в постоянный, мы используем выпрямитель. Очень часто можно встретить название преобразователи частоты ci, что просто альтернативный термин для инверторов, именно из-за возможности регулирования частоты напряжения. Благодаря инверторам можно, в том числе, регулировать пуск и скорость вращения электродвигателей. Например, увеличение или уменьшение частоты напряжения в указанном электродвигателе вызывает изменение скорости вращения его ротора.В дальнейшей части статьи обсуждаются виды, принципы работы и применение инверторов в современных электрических системах.
Инвертор Принцип работы
Отличительной особенностью инверторов является форма и качество выходного сигнала, т.е. изменение напряжения переменного тока во времени. Обычно она соответствует синусоидальной функции, аналогичной кривой напряжения, генерируемой синхронным генератором. Как правило, индукторы с механическим контактом производят только напряжение прямоугольной формы, которое в лучшем случае подходит для работы с простыми потребителями, такими как, например, лампочки.С другой стороны, современные электронные инверторы обеспечивают чистое, точное синусоидальное выходное напряжение, не отличающееся от напряжения синхронного генератора. Конечно, решающим фактором качества инвертора является эффективность преобразования мощности. Важный вопрос: какая часть постоянного тока на другой стороне выходит в виде переменного? Лучшие инверторы достигают КПД более 98 процентов и, следовательно, близки к физически возможному пределу. Этот КПД выражает отношение эффективной электрической выходной мощности переменного тока к электрической входной мощности постоянного тока и определяется по формуле:
η = P (AC) / P (DC)
AC) - выходная мощность переменного тока
P (DC) - входная мощность постоянного тока
При преобразовании энергии в инверторе некоторые потери генерируются в виде тепла, из-за чего инверторы просто нагреваются.Для улучшения условий эксплуатации, в том числе для уменьшения нагрева, инверторы часто оснащаются вентиляторами и радиаторами для охлаждения электронных компонентов.
Следующий критерий касается режима работы . Подключенные к сети инверторы, используемые в большинстве фотоэлектрических систем, адаптируются к сети питания по частоте и фазе. Они синхронизируются с сетью, чтобы принести туда солнечную энергию. Однако в случае источников бесперебойного питания и других автономных систем используются так называемые независимые инверторы.Такие инверторы автоматически определяют частоту и напряжение генерируемого переменного тока и поэтому могут выполнять функцию генератора сети.
Строительство инвертора

Рис. Строительная пластина инвертера Lenze 8200 вектор 1-фаза
A) Контрольная пластина с электрической проводящей поверхностью
B). монтируйте экран как можно дальше от поверхности к пластине экрана (PES)
C) 2-полюсная клемма для заземления двигателя и экрана двигателя
D) Заземление кабеля двигателя (PE)
E) Экран кабеля двигателя
F) Низкий мощность экранированного кабеля двигателя ( Ƽyła / Ƽyła 1.5 мм2 £ 75 пФ/м; аб 2,5 мм2 £ 100 пФ/м; Жила/экран £ 150 пФ/м)
G) Экранированный кабель с положительным температурным коэффициентом или кабель с термоконтактом
H) Закрепите экран кабеля на большой площади на пластине экрана (PES). Используйте прилагаемые зажимы экрана.
I) Соединение по схеме «звезда» или «треугольник» в соответствии с паспортной табличкой двигателя
J) Кабельный разъем ЭМС (не входит в комплект поставки)
Режим работы — от контактных инверторов до современных полупроводниковых инверторов
Режим работы инвертора работает лучше всего объяснить по аналогии с его технологической разработкой : от чисто механического контактного инвертора к современным инверторам на основе полупроводников.
90 100 Контактный инверторКонтактный инвертор работает по тому же принципу, что и устройство под названием молоток agner ow - ток - ток возбуждения прерывается, реле вибрирует то гаснет, то снова включается ток возбуждения. Затем весь процесс начинается сначала.
Реле также может переключать полярность выходного напряжения. Частота выходного напряжения в таком инверторе обусловлена инерционностью реле, которая изменяется с помощью маховика.Из-за различных недостатков, таких как высокое потребление, сильный шум и помехи от контактных искр, этот тип инверторов в настоящее время больше не используется.
Одним из наиболее интересных технических решений, применявшихся, например, для освещения вагонов поездов с батарейным питанием, была замена контактов реле токопроводящим потоком жидкой ртути, который вращался в закрытом корпусе и поочередно проходил через две контактные точки .
Решающий прорыв произошел с развитием полупроводниковой техники: силовые транзисторы в качестве электронных переключателей позволили создавать гораздо более эффективные устройства - без искрения, шума и механического износа.Схема H-моста, используемая до сих пор, составляет основу каждого инвертора . Четыре полупроводниковых ключа (сейчас часто IGBT транзисторы ) открываются и закрываются поочередно попарно в поперечном направлении так, что полярность среднего "моста" каждый раз меняется. Временной контроль полупроводников определяет частоту смены полярности и, следовательно, выходное напряжение переменного тока. В простейшем случае переключение 100 раз в секунду между состояниями переключателей «S1+S4 разомкнут» и «S2+S3 разомкнут» приведет к появлению прямоугольного переменного напряжения с частотой 50 Гц.
Таким образом, , первые полупроводниковые инверторы серии , в которых первоначально использовались тиристоры в качестве переключающих элементов, быстро зарекомендовали себя как прочные и надежные. Однако с дальнейшим развитием полупроводниковых технологий возможно гораздо больше. Современные силовые транзисторы имеют максимальные частоты c и частоты переключения 10000 Гц , поэтому они могут переключаться намного быстрее, чем это потребовалось бы для выходной частоты 50 Гц.Это именно то, что вы можете сделать с помощью Pulse Width Modulation Technique PWM (рис. 1). Мостовая схема с гораздо более быстрой тактовой частотой генерирует множество коротких импульсов напряжения различной длительности (ширины импульса), которые дают желаемый усредненный по времени выходной сигнал. Таким образом, Импульсное напряжение может модулировать любую форму сигнала - очевидно, для инверторов желаемую синусоидальную кривую .

Рис. 1.Широтно-импульсная модуляция (ШИМ)
Использование в конструкции инверторов c ewk и индуктивных ej позволяет сгладить сигнал короткого импульса (ФНЧ) - что приводит к чистое синусоидальное переменное напряжение. Для достижения необходимого уровня напряжения (230В, 400В или 20000В) за Н-мостом инвертора обычно следует трансформатор , дополнительно обеспечивающий гальваническую развязку сетей переменного и постоянного тока.
Помимо инверторов с трансформаторами, есть также инверторы безтрансформаторные . Эти устройства меньше по размеру, соответственно легче и обеспечивают несколько лучшую производительность. Требуемый уровень выходного напряжения здесь достигается с помощью повышающего преобразователя , который подключается перед H-мостом инвертора.
Источники питания для инверторов
По источнику питания инверторы подразделяются на:
- инверторы напряжения
- инверторы тока
90 100 инверторы напряжения 90 103 9 инверторы напряжения 9 VSI - V oltage S ource I nverter) представляют собой группу инверторов, в которых входное напряжение (на конденсаторе фильтра) является постоянным. Выходное напряжение регулируется широтно-импульсным управлением (ШИМ). Напряжение на выходных клеммах инвертора имеет форму, очень похожую на синусоиду, создаваемую в результате коммутации (тактирования) входного напряжения. Синусоидальная волна, как показано на рисунке выше, состоит из импульсов регулируемой ширины (ШИМ).На входе инвертора есть конденсатор, а синхронизация напряжения осуществляется переключателем, состоящим из транзистора (часто IGBT) или реже тиристора и диода. Это позволяет переключать инвертор между полюсами источника питания независимо от направления протекания в нем тока.
Текущие инверторы ( CSI - C URRENT S TURCE I NVERTE регулируемая частота.На входе инвертора имеется дроссель для предотвращения колебаний электрического тока и ограничения переменного тока без потери мощности. Одним из преимуществ инверторов тока является большой диапазон регулирования частоты, а при использовании в асинхронных двигателях возможна отдача энергии в сеть при торможении. Кабели и двигатели со стандартной изоляцией можно использовать при создании систем управления благодаря инвертору тока.
Обычно используемые инверторы , а также ilane являются переменными напряжениями однофазными или трехфазными, которые выдают трехфазное напряжение.В зависимости от напряжения питания, для 1-фазного инвертора, т.е. 1x230В, на выходе получается трехфазное напряжение 3x230В. В маломощных двигателях можно использовать однофазные инверторы. В случае большей мощности двигателя стандартом питания такого инвертора является напряжение 3х400В, тогда выходное напряжение - переменное напряжение 3х400В. Работа таких инверторов заключается в том, что переменный ток, питающий инвертор, сначала выпрямляется с помощью неуправляемого диодного выпрямителя или управляемого тиристорного выпрямителя.Затем на основе полученного постоянного напряжения формируются три фазы напряжения, сдвинутые друг относительно друга на 120 градусов.
Типы и управление инверторами
Управление инверторами заключается в выборе соответствующего алгоритма управления.
По способу управления различают следующие типы инверторов :
- скалярное управление
- управление с линейной характеристикой
- управление с квадратичной характеристикой
- векторное управление
скалярный инвертор 8
Что такое скалярный инвертор?
Скалярное управление — простейший метод управления пусковым моментом асинхронного двигателя с инвертором.В случае скалярного управления с линейной характеристикой сохраняется постоянная зависимость между выходной частотой и выходным напряжением U/f=const. Скалярные инверторы используются в более простых устройствах, не требующих точного управления скоростью вращения. Они очень хорошо работают в устройствах с «легким» пуском и там, где момент нагрузки электродвигателя уменьшается с увеличением скорости или относительно постоянен во всем диапазоне ее изменения.
Рис.Скалярный инвертор GD10 2,2 кВт / 400 В
90 100 Регулирование с квадратичной характеристикойРегулирование с квадратичной характеристикой соответствует U / f² = const. По мере увеличения выходной частоты выходное напряжение становится квадратным. Эти инверторы отличаются энергосбережением, они используются, например, в вентиляторах или для управления приводами в автоматизации зданий.
Векторный инвертор
Что такое векторный инвертор?
Векторное управление является более совершенным и позволяет более точно управлять скоростью двигателя, чем скалярное управление.Векторные инверторы способны поддерживать постоянное значение крутящего момента двигателя во всем диапазоне регулирования частоты вращения. Качество управления двигателем особенно заметно на низких оборотах двигателя, так как они позволяют настроить его с точностью до сотых долей процента. Кроме того, каждый векторный инвертор способен к скалярной операции - линейной y m (U/f) . Дело в том, что они требуют дополнительных компонентов, необходимых для обратной связи.Исключением, однако, является инвертор DTC (прямое управление крутящим моментом), который имеет наиболее совершенный метод управления без обратной связи.
Рис. Векторный инвертор Goodrive20 0,75кВт/400В
При использовании векторного инвертора дополнительно требуется для определения номинальных параметров двигателя , с которым он будет работать. По этой причине большинство новых и начинающих векторных инверторов изначально настроены на скалярный режим управления.При скалярном управлении достаточно указать только частоту, напряжение и ток. С другой стороны, остальные данные, необходимые для векторного управления, относятся к конкретному двигателю и должны вводиться при первом его использовании.
Векторные инверторы далее подразделяются на без датчиков и с обратной связью . Отличие заключается в способе определения частоты вращения ротора двигателя. Для бессенсорных инверторов скорость вращения рассчитывается на основе математической модели двигателя.В случае инверторов с обратной связью фактическое значение скорости измеряется инкрементным энкодером, установленным на валу двигателя.
Вообще говоря, преобразователи частоты со скалярным управлением чаще всего используются в приводах с переменным крутящим моментом, в основном по экономическим причинам. Они снижают затраты, в том числе на энергию. Сама стоимость производства скалярных инверторов дешевле по сравнению с векторными инверторами. Например, с учетом пуска двигателя скалярные инверторы подстраиваются под нагрузку, обеспечивая минимальное количество энергии, необходимое для ее выполнения, тем самым снижая потери энергии.
Одно из различий в управлении между скалярными инверторами и векторными является нет может управлять несколькими двигателями одновременно при использовании векторного инвертора, в то время как это возможно со скалярным инвертором. Стоит отметить, что управляя большим количеством двигателей, скалярный инвертор будет управлять не током от каждого двигателя в отдельности, а только их суммарным током.Для защиты отдельных двигателей от короткого замыкания или перегрузки используются переключатели и двигателей e (тепловые) . Термики имеют два элемента защиты: термопредохранитель и электромагнитный предохранитель . Первый расцепитель служит для защиты обмотки двигателя от перегрузки, а второй, электромагнитный, защищает от короткого замыкания. Кроме того, оба триггера дополнительно чувствительны к повышенной температуре и обрыв фазы.В случае возникновения в двигателе одного из вышеперечисленных нарушений, термик отключит его питание.
Кроме того, при управлении скалярным инвертором заданным значением является фиксированная частота , а скорость вращения ротора уменьшается за счет его скольжения по отношению к генерируемой частоте вращения магнитного поля в статоре (синхронная скорость). Однако поведение самого двигателя не контролируется. Для векторных инверторов заданным значением является скорость вращения ротора , которая постоянно стабилизируется.
Применение инверторов в электродвигателях -
Асинхронные (асинхронные) двигатели применяются для преобразования электрической энергии в механическую. Одной из их особенностей является то, что они намного дешевле , проще по конструкции и надежнее по сравнению с другими двигателями. Они состоят из двух основных частей: неподвижного статора и подвижного ротора. В отличие от синхронных двигателей, ротор асинхронного двигателя не питается от дополнительного источника питания.Напряжение переменного тока, подключенное к обмотке статора, создает переменное магнитное поле, заставляющее ротор вращаться вокруг своей оси. Следует добавить, что ротор вращается со скольжением, т.е. с запаздыванием по отношению к магнитному полю, создаваемому обмоткой статора. Скольжение асинхронного ротора увеличивается с нагрузкой и составляет примерно 2 - 4 %.
Проблема в асинхронных двигателях запуск и отсутствие контроля скорости .Пусковой ток в 4-8 раз превышает номинальный рабочий ток двигателя. Запуск электродвигателей очень быстрый и требует больших затрат энергии и может вызвать отказы, такие как перегрев . Во избежание выхода из строя из-за перегрева во время пуска используются методов снижения напряжения . Например, трехфазные двигатели используют запуск звездой - треугольник . Что это за запуск? Вообще говоря, это метод переключения обмоток двигателя, используемый потому, что пусковой ток необходимо уменьшить для более крупных двигателей. При пуске обмотки трехфазного двигателя соединяются в звезду, такая система обозначается символом Y. Затем обмотки подготавливают к более высокому напряжению. После запуска обмотки переключаются треугольником (символ ∆) для правильного напряжения питания. В результате двигатель при пуске питается от более низкого напряжения, что ограничивает пусковой ток.Стоит отметить, что при таком пуске двигатель нельзя нагружать, т.к. ограничение пускового тока двигателя снижает и его пусковой момент. Кроме того, двигатель должен быть рассчитан на работу в треугольнике. В этом случае на его паспортной табличке должно быть указано 400 В / 690 В (Δ / A) или 400 В (Δ). Если двигатель должен питаться линейным напряжением 400 В, его обмотки должны быть адаптированы к 690/400 В.

Рис.2 Соединения для трехфазных систем
Пуск по схеме «звезда-треугольник» в основном используется в более мощных двигателях или как дополнительный альтернативный метод пуска в случае отказа основного пуска, например, на основе инвертора. В двигателях мощностью до 4–5 кВт можно использовать прямой пуск.
Устройство плавного пуска
Если нет необходимости регулировать скорость вращения двигателя, т.н. Устройство плавного пуска . Устройство плавного пуска представляет собой своего рода урезанный инвертор, который в основном ограничивается управлением пусковым током и возможной остановкой двигателя.Он используется во многих промышленных приложениях, особенно в приводах, требующих плавного изменения крутящего момента. С помощью устройств плавного пуска можно, помимо прочего, задавать продолжительность пуска, что особенно важно в приложениях с высокой инерцией, и контролировать потерю фазы. Кроме того, к некоторым устройствам плавного пуска также можно подключить датчик температуры двигателя.
Инверторы позволяют увеличивать или уменьшать частоту напряжения , тем самым изменяя скорость вращения и регулируя пуск.Однако при изменении частоты необходимо соблюдать пропорциональность напряжению, т.е. напряжение должно уменьшаться или увеличиваться пропорционально частоте. Для этого инверторы дополнительно оснащены широтно-импульсной модуляцией (ШИМ). В асинхронных двигателях скорость вращения ротора на 2–4 % ниже синхронной скорости (скорости вращения магнитного поля) двигателя. Это означает, что в Польше и во всей Европе для частоты электросети 50 Гц синхронная скорость составляет 3000 об/мин, что дает частоту вращения ротора в асинхронном двигателе в диапазоне 2800-2900 об/мин.
Передача постоянного тока на большие расстояния
Большинство современных электросетей работают на переменном токе. Это связано с простотой получения такого тока с помощью синхронных генераторов, конструкция и себестоимость которых значительно дешевле машин постоянного тока. Напряжение в системах переменного тока можно легко преобразовать с помощью трансформатора, что снижает потери, вызванные передачей тока на большие расстояния.Для уменьшения потерь, связанных с передачей тока, следует уменьшить ток и повысить его напряжение , которое затем следует понизить до значений, безопасных для конечного пользователя . Отсюда в зависимости от назначения различают сети высокого, среднего и низкого напряжения.
Длина линий электропередачи AC однако ограничена и зависит от типа линии (воздушная, кабельная) и ее нагрузки.Явление зарядки линии , которое происходит особенно в длинных и малонагруженных линиях, приводит к потреблению реактивной мощности и, таким образом, вызывает потери энергии.
Это явление не применяется к линии высокого напряжения CIA PR DC HVDC ( H IGH- V OLTAGE D IRECT C URRENT), потому что этот тип линии нагружен нагрузкой C ), потому что этот тип линии нагружен. только при включении питания или изменении напряжения.В результате минимизируются потери при передаче и, следовательно, становится выгоднее передавать DC на большие расстояния. В линиях постоянного тока перед передачей ток выпрямляется выпрямителем, а на стороне получателя находится инвертор, преобразующий постоянный ток в переменный.
Применение инвертора - поставщик чистой, экологически чистой электроэнергии
Помимо питания трамваев или зарядных устройств, постоянный ток необходим для работы практически каждой электронной схемы. Аккумуляторы , ископаемое топливо , а также популярные в последнее время солнечные батареи или ветряные турбины - будучи чистым и возобновляемым источником электроэнергии - производят только постоянного тока. Инвертор необходим для подачи генерируемого постоянного тока в бытовые розетки. Для большинства ветряных электростанций и всех без исключения фотоэлектрических систем инвертор является интерфейсом к сети, это центральный m элемент em в фотоэлектрических системах.Он отвечает не только за наиболее полное преобразование постоянного тока в переменный, но и обеспечивает работу солнечной батареи в оптимальной рабочей точке, следит за сетью и эффективностью фотоэлектрической системы. Производство солнечной энергии стало самым важным рынком для инверторов в последние годы. Поэтому инверторы имеют большое практическое значение в качестве соединения между двумя энергосистемами постоянного и переменного тока.
.
power Supplies.online blog
В чем разница между блоком питания и зарядным устройством?
Оба устройства похожи друг на друга и разница заключается в параметрах, которые устанавливаются и которые могут изменяться. Источник питания подает напряжение фиксированного и неизменного значения, например 12 В, а протекающий ток определяется нагрузкой. Ток может быть низким или высоким, но напряжение источника питания не меняется. В зарядном устройстве регулирование распространяется на выходной ток, который неизменен и составляет, например,1А. В свою очередь, напряжение на выходе зарядного устройства может изменяться в широких пределах. Это напряжение задается присоединенным аккумулятором, при его разрядке - низкое, при зарядке - высокое.
Зарядное устройство и блок питания выглядят одинаково, иногда неизвестно, что у нас в ящике зарядное, а что блок питания. Такая неоднозначность возникает из-за того, как устроены электронные устройства. Как правило, зарядное устройство состоит из двух частей: блока питания и электронной системы, отвечающей за зарядку и проверку состояния аккумулятора (система контроля за зарядкой).Эта схема управления может быть внутри блока питания или зашита в устройство.
Например - в мобильный телефон встроена такая система контроля зарядки. Поэтому для зарядки ему требуется только обычный адаптер питания, а обо всем остальном позаботится он сам. В этом случае телефон работает от блока питания, хотя такой блок питания обычно называют «зарядным устройством».
В последнем случае схема контроля заряда может быть встроена внутрь блока питания. Примером такого зарядного устройства является автомобильное зарядное устройство, полностью контролирующее процесс зарядки и требующее подключения непосредственно к клеммам аккумулятора.Такое устройство еще в просторечии называют зарядным устройством, которое иногда сложно увидеть.
Как узнать, где находится ответственный за зарядку?
Супервизор заряда находится там, где находится индикатор заряда (символ на дисплее, светодиод и т.д.). В телефоне он отображается на экране (символ батареи), так что есть система мониторинга. В свою очередь, в автомобильных зарядных устройствах индикатор зарядки находится в корпусе зарядного устройства (например, красный светодиод).Таким образом, схема контроля располагается внутри корпуса зарядного устройства.
В случае электроинструментов иногда светодиод, показывающий зарядку, находится в корпусе блока питания, а в других случаях он установлен в корпусе инструмента (например, дрели). В последнем случае для зарядки используется обычный блок питания, поскольку производитель установил зарядную часть внутрь дрели.
Электроэнергия протекает двумя путями: в одном переменного тока (AC) или в одном постоянного тока (DC) . Электричество или «ток» — это не что иное, как движение электронов по проводнику, подобному проводу. Разница между переменным и постоянным током заключается в направлении движения электронов. В постоянном токе электроны постоянно движутся в одном направлении или «вперед». На переменном токе электроны меняют направление, то «вперед», то «назад».
Переменный ток — лучший способ передачи электроэнергии на большие расстояния.
Сравнительная таблица
Переменный ток | Постоянный ток | |
---|---|---|
Количество энергии, которое может быть перемещено | Обеспечивает большую безопасность в городе. | Напряжение постоянного тока не может распространяться слишком далеко, пока не начнет тратить энергию. |
Причина направления потока электронов | Вращение магнита вдоль провода. | Постоянный магнетизм вдоль провода. |
Частота | Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. | Частота постоянного тока равна нулю. |
Направление | Меняет направление при протекании по контуру. | Течет в цепи в одном направлении. |
присутствует | Это ток, величина которого меняется со временем | Это ток постоянной величины. |
Поток электронов | Электроны меняют направление - вперед и назад. | Электроны движутся равномерно в одном направлении или «вперед». |
Получено от | Генератор переменного тока и блок питания. | Элемент или батарея. |
Пассивные параметры | Полное сопротивление. | Только сопротивление. |
Коэффициент мощности. | Чистый и пульсирующий. |
Содержание: переменный и постоянный ток (переменный и постоянный ток)
90 105 90 106 1 Происхождение переменного и постоянного тока 90 107 90 106 2 Видео Сравнение переменного и постоянного тока трансформаторы переменного тока 90 107 90 106 4 Хранение и преобразование переменного тока в постоянный и обратноИсточник переменного и постоянного тока
Магнитное поле вблизи провода заставляет электроны течь в одном направлении вдоль провода, поскольку они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне. Так родилась энергия постоянного тока от батареи, в основном благодаря работе Томаса Эдисона.
Генераторы переменного тока постепенно заменили аккумуляторную систему постоянного тока Эдисона, поскольку переменный ток безопаснее для передачи на большие расстояния в городе и может обеспечить большую мощность.Вместо того чтобы постоянно прикладывать магнитное поле к проводу, ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли в положительном направлении, но когда ориентация магнита была обратной, электроны также вращались.
Видео, сравнивающее переменный и постоянный ток
Использование трансформаторов переменного тока
Другое различие между переменным и постоянным током заключается в количестве энергии, которое они могут нести.Каждая батарея рассчитана на выработку только одного напряжения, и постоянное напряжение не может распространяться слишком далеко, пока не начнет терять энергию. А вот напряжение переменного тока от генератора на электростанции можно повысить или понизить другим механизмом, называемым трансформатором . Трансформаторы расположены на электрическом столбе на улице, а не на электростанции. Они преобразуют очень высокое напряжение в более низкое напряжение, подходящее для бытовых приборов, таких как лампы и холодильники.
Хранение и преобразование переменного тока в постоянный и наоборот
Переменный ток можно даже преобразовать в постоянный с помощью адаптера, который можно использовать для питания аккумулятора ноутбука. DC можно «поднять» вверх или вниз, просто это немного сложнее. Инверторы преобразуют постоянный ток в переменный. Например, в вашем автомобиле инвертор преобразует 12 В постоянного тока в 120 В переменного тока для запуска небольшого устройства. В то время как постоянный ток можно хранить в батареях, переменный ток хранить нельзя.
Ссылки
- Википедия: Электрические сети по странам 90 107 90 106 Википедия: переменный ток 90 107 90 106 Википедия: постоянный ток 90 107 90 116 .
AC, DC, CHAdeMO — термины, которые необходимо знать при вождении электромобиля
.АС
Время зарядки электромобиля во многом зависит от источника электроэнергии, которым заряжается аккумулятор автомобиля. В Польше автомобили чаще всего заряжают переменным током, т.е. AC. Другими словами, это зарядка от общеизвестной розетки дома, настенных зарядных устройств или зарядных станций, например, в отелях или ресторанах. Мощность зарядки при этом не очень высокая, в зависимости от зарядного устройства она колеблется от 3 кВт до 22 кВт, а в некоторых случаях даже 44 кВт.
DC
DC также известен как постоянный ток. Его используют так называемые быстрые зарядные устройства, отличающиеся гораздо большей мощностью – 100 или 150 кВт, что в свою очередь обеспечивает гораздо меньшее время зарядки в электромобиле. В зависимости от мощности зарядной станции и аккумулятора в автомобиле время полной зарядки может составлять от нескольких десятков минут до примерно 2 часов. Из-за того, что стоимость зарядного устройства постоянного тока часто в несколько раз выше, чем у переменного тока, зарядные устройства переменного тока более распространены в Польше.
УГС
Стандарт зарядки электромобилей. Аббревиатура происходит от Combinad Charging System. В настоящее время CCS поддерживает до 350 киловатт (кВт), но не исключено, что в ближайшем будущем она будет увеличена. Помните, что мощность зарядки зависит не только от зарядного устройства, но и от автомобиля, в котором находится аккумулятор, а точнее от его бортового зарядного устройства. Стандарт CCS становится все более популярным в электромобилях европейского производства.Некоторые СМИ даже утверждают, что со временем он обгонит CHAdeMO, хотя, как утверждает Михал Барановский, генеральный директор Elocity, — до него еще далеко.
ЧАдеМО
CHAdeMO — стандарт для зарядки электромобилей постоянным током — DC. В Польше за свою популярность отвечает Nissan Leaf, но теперь его также можно найти в электромобилях и подключаемых гибридах. такие бренды, как: Mitsubishi, Mazda, Citroen или новый Lexus.Интересен тот факт, что в США единственными автомобилями с розетками CHAdeMO, которые в настоящее время продаются, являются вышеупомянутые Nissan Leaf и Mitsubishi Outlander PHEV. CHAdeMO — это стандарт, который по-прежнему особенно популярен в Азии и Японии.
Зарядное устройство для электромобилей
Устройство, позволяющее заряжать электромобили переменным током. В этом случае мы можем попытаться различать два типа:
- стационарное зарядное устройство, напр.тип настенного ящика. Его можно установить дома или в гараже. Он использует переменный ток - AC.
- мобильное/портативное зарядное устройство. Это зарядное устройство, которое можно возить с собой в автомобиле, позволяющее в экстренной ситуации подключаться к обычной розетке 230 В, адаптированное для зарядки электромобилей (заземление). Во многих случаях интенсивность процесса зарядки можно контролировать с помощью зарядного устройства в зависимости от типа предохранителя в розетке. Портативные зарядные устройства все чаще устанавливаются на новые электромобили или добавляются в качестве аксессуаров для так называемых электромобилей.скажем злотый. При покупке нового автомобиля также стоит не забыть взять с собой портативное зарядное устройство.
Зарядная станция для электромобилей
Устройство для зарядки электромобилей. В зависимости от типа электричества речь идет о станциях переменного тока (медленного переменного тока), которые часто располагаются в городах, отелях, ресторанах или на парковках торговых центров.
В свою очередь, станции постоянного тока характеризуются гораздо большей мощностью, как было сказано выше.С их помощью автомобиль можно зарядить за несколько десятков минут. Раньше существовало мнение, что зарядка автомобиля с помощью быстрых зарядных устройств вредна для автомобильного аккумулятора, но сегодня от этого убеждения отходят, так как нет исследований, которые это подтверждали бы. Эксперт по электромобилям Михал Барановский, генеральный директор Elocity, рекомендует использовать оба варианта. Когда есть возможность, стоит заряжать зарядными устройствами переменного тока, но в ситуации, когда нужно зарядить аккумулятор в короткие сроки, нет противопоказаний использовать для этого станции быстрой зарядки постоянным током.
кВт
киловатта - иначе 1000 ватт. Ватт, в свою очередь, называют единицей мощности. Киловатт является широко используемой единицей, когда речь идет о процессе зарядки электромобиля и для описания выходной мощности двигателя электромобиля.
кВтч
Киловатт-час (кВтч), который является единицей работы, энергии и тепла. Короче говоря, 1 кВтч соответствует количеству энергии, потребляемой за час работы устройством мощностью 1000 Вт (1 кВт).
кВтч/100 км
Индикатор, показывающий спрос на электроэнергию и стоимость проезда на 100 километров на электромобиле или подключаемом гибриде.
ПГЭМ
Название происходит от английского языка. PHEV, т.е. подключаемый гибридный электромобиль, т.е. гибридный электромобиль, использующий как обычный привод, так и электрический, который можно заряжать с помощью упомянутых выше электрических зарядных устройств.В конце 2020 года на польском рынке было доступно около 70 моделей автомобилей PHEV, а к концу этого года их наверняка станет еще больше, тем более что сегодня почти каждый производитель автомобилей вводит в свое предложение гибриды.
Рекуперативное торможение
Это процесс торможения электромобиля без использования тормозов. Затем происходит процесс восстановления энергии. Благодаря этому можно немного увеличить запас хода электромобиля или подключаемого гибрида.Рекуперативное торможение особенно используется и, прежде всего, рекомендуется для движения по городу.
Хотите узнать больше?
Конечно, это не все термины, связанные с электромобильностью. С развитием этого рынка обязательно появятся новые аббревиатуры и термины. Однако, если вы хотите быть в курсе и интересуетесь темой электромобилей, зарядной инфраструктуры или электромобильности в целом, мы рекомендуем вам сегодня подписаться на канал Naładowani TV на YouTube, где каждую неделю, каждую пятницу выходят новые выпуски, в которых мы комментируем все, что важно в электромобилях.
JET TIG II AC / DC 200-S ТОЧЕЧНАЯ / ХОЛОДНАЯ СВАРКА IGBT Welder Инверторный сварочный аппарат Fantasy + держатель паркера: JET TIG II 200-S
Код продукта: JET TIG II 200-S
Описание:
Welder Fantasy — торговая марка, созданная компанией FACHOWIEC в 1991 году.Инверторные сварочные аппараты TIG/MMA, полуавтоматы для сварки MIG/MAG, плазменные резаки и другое оборудование, маркированное торговой маркой Welder Fantasy, на протяжении многих лет ценится тысячами мастерских и предприятий в Польше и за рубежом. Торговая марка Welder Fantasy:
- Устройства высшего качества,
- Гарантия надежности,
- Высокие рабочие параметры,
- Лидер на польском рынке.
Самый современный аппарат TIG на польском рынке! Ранее недоступные функции теперь у вас под рукой!
TE CH NOL O GIA - ANGBT.Биполярный транзистор с изолированным затвором - - это современная технология , основанная на на основе биполярных транзисторов с изолированным затвором. Он сочетает в себе простоту управления свинцовыми транзисторами р с высоким напряжением пробоя и скоростью переключения биполярных транзисторов . Использование технологии IGBT значительно продлевает срок службы сварочного оборудования .
Высокая эффективность устройства 60% .
Аппарат высшего класса устанавливает новые стандарты среди сварочных аппаратов переменного/постоянного тока, а удобная панель управления обеспечивает выбор всех необходимых рабочих параметров. В стандартную комплектацию входит сварочная горелка PARKER SUREGRIP SGT26 FLEX TIG SRT 26-4m - с регулировкой сварочного тока .
Промышленное оборудование Welder Fantasy JET TIG II AC/DC 200 SPOT IGBT – это микропроцессорные сварочные источники на основе технологии IGBT , подходящие для сварки углеродистых, нержавеющих, кислотоупорных сталей, меди, латуни, магния, титана и всех алюминиевые сплавы.
ХАРАКТЕРИСТИКИ УСТРОЙСТВА:
* компактный дизайн,
* транзисторы IGBT ,
* КПД 60% ,
* удобная панель управления,
* дисплей LCD параметры сварки,
* дисплей LCD индивидуальная программа,
*
*
*
*
* дисплей функция SPOT , TAC , закругление электрода,
* можно сохранить полные 60 пользовательских программ,
* очень широкий спектр функций сварки.Аппарат позволяет производить сварку методами:
ВИГ с подъемной дугой постоянного тока - В методе ВИГ (вольфрам в инертном газе) электрическая дуга зажигается в среде инертного газа (аргона) между заготовкой и неплавящимся электродом из чистого вольфрама или вольфрама с добавки. В режиме подъемной дуги TIG дуга зажигается, когда электрод входит в контакт с заготовкой.В режиме TIG DC ток постоянный.
TIG DC HF - Чтобы полностью исключить возможность загрязнения сварного шва вольфрамом, рекомендуется, чтобы электрод не касался заготовки; для этого применяется бесконтактное зажигание дуги с использованием высокочастотных разрядов, генерируемых встроенным в прибор ионизатором.
TIG DC PULS lift-arc - дуга зажигается при контакте электрода со свариваемым материалом, функция импульса позволяет сваривать тонкие элементы за счет периодического изменения силы тока.
TIG DC PULS HF - бесконтактный ВЧ розжиг с использованием ионизатора в режиме TIG DC PULS
TIG AC lift-arc - функция, позволяющая сваривать алюминий за счет использования переменного тока, выполняющая функцию катодной очистки при сварке алюминия. Благодаря возможности настройки параметра AC BALANCE, т.е. баланса переменного тока, можно регулировать соотношение длительности его фаз друг к другу.
TIG AC HF - аналогичная функция, позволяющая сваривать алюминий переменным током, зажигание осуществляется бесконтактным током высокой частоты, генерируемым ионизатором
TIG AC PULS lift-arc - сварка в этом режиме сочетает использование переменного тока с импульсным, что позволяет сваривать очень тонкие элементы из алюминия. Дуга зажигается при контакте электрода со свариваемым материалом.
TIG AC PULS HF - функция, позволяющая сваривать алюминиевые элементы небольшой толщины. Бесконтактный розжиг благодаря использованию ионизатора.ВИГ AC + DC - РАСШИРЕННАЯ функция AC позволяет выполнять сварку смешанным током AC DC-. За один цикл происходит переход между переменным и постоянным током с отрицательной полярностью постоянного тока (-). Этот цикл повторяется на протяжении всего процесса сварки.Сварка смешанным током особенно удобна при соединении элементов разной толщины. Это также снижает уровень шума по сравнению со сваркой на переменном токе.
ХОЛОДНАЯ СВАРКА ВИГ (СТЕЖОК) - эта функция генерирует мощные разряды сварочной дуги за очень короткое время (даже до 0,001 с). Это позволяет соединять свариваемые элементы без добавления связующего, в том числе из разнородных материалов.Удерживая кнопку на сварочном держателе, можно выполнять непрерывную сварку серией швов. Пользователь имеет возможность установить продолжительность сплавления и интенсивность тока. Функция ХОЛОДНАЯ СВАРКА особенно полезна при соединении элементов толщиной менее 1 мм, сварке кромок и везде, где важно, чтобы свариваемые элементы располагались как можно ниже.
TIG SPOT - Сварка TIG SPOT применяется для соединения внахлест (прихватки) тонких листов (до 1,5 мм, со сверлением до 5 мм - точечное соединение) из стали, легированных сталей, а также для стыковки листы перед стыковой сваркой.Способ заключается во введении короткого термического импульса (0,1-4 с), в течение которого поверхность листа под действием электрической дуги оплавляется и приваривается к листу непосредственно под ним.
MMA DC + - В методе MMA используется электрод с покрытием, состоящий из металлического сердечника, покрытого оболочкой. Электрическая дуга возникает между концом электрода и свариваемым материалом.Дуга зажигается при прикосновении кончика электрода к свариваемому материалу. MMA DC+ означает сварку с положительной полярностью — в материале выделяется больше тепла, а в электроде — меньше.
MMA DC- - отличие MMA DC+ в том, что полярность в режиме MMA DC - отрицательная, поэтому распределение тепла обратное - больше тепла выделяется на электроде и меньше в свариваемом материале.
MMA VRD DC+ - доступен в режиме MMA DC+, функция VRD (Voltage Reduction Device) - модуль снижения напряжения холостого хода вторичной цепи устройства Повышает безопасность и снижает риск поражения электрическим током Функция переключает сварочное питание включается и выключается во время сварки, сопротивление между кончиками электрода и заготовкой будет измерено.
MMA VRD DC- - доступен в режиме MMA DC- Функция VRD (Voltage Reduction Device) работает так же, как и MMA VRD DC+, отличие заключается в отрицательной полярности.ФУНКЦИИ ПАНЕЛИ:
- Программируемые пользователем заводские настройки для сварки алюминия и стали (60 каналов памяти)
- Выбираемая форма волны:ADVANCED SQUARE - прямоугольная форма волны переменного тока позволяет сваривать алюминий с магнием
SOFT SQUARE - трапециевидная форма волны переменного тока используется для сварки алюминия с кремнием
ТРЕУГОЛЬНАЯ - установка треугольной формы тока оптимальна для сварки тонких деталей, в том числе анодированного алюминия
SINE - синусоидальная форма волны рекомендуется для сварки чистого алюминия 99,999%
- AC/DC EASY SETUP - возможность использования запрограммированных заводских настроек.
- НОРМАЛЬНАЯ НАСТРОЙКА - параметры сварки устанавливаются в соответствии с индивидуальными потребностями.- SPOT - Сварка TIG SPOT применяется для соединения внахлест (прихватки) тонких листов (до 1,5 мм, со сверлением до 5 мм - точечное соединение) из стали, легированных сталей, а также для соединения листы перед стыковой сваркой. Способ заключается во введении короткого термического импульса (0,1-4 с), в течение которого поверхность листа под действием электрической дуги оплавляется и приваривается к листу непосредственно под ним.
- PULS TAC - обеспечивает эффективный способ соединения тонких листов, сохраняя небольшое количество введенного тепла, что значительно снижает деформацию материала. Высокая частота пульсирующего тока позволяет очень быстро образовать сварочную ванну, что приводит к немедленному образованию сварного шва. В этом режиме возможно предварительное соединение свариваемых элементов серией коротких сварных швов, что позволяет предварительно позиционировать свариваемые элементы относительно друг друга.
- ЗАГЛУШЕНИЕ ЭЛЕКТРОДА - позволяет зажечь короткую дугу, чтобы расплавить кончик заостренного электрода и сформировать закругление на его вершине. Закругленный кончик электрода предотвращает блуждание сварочной дуги, которое может быть вызвано неправильной подготовкой неплавящегося электрода. Дополнительным преимуществом использования закругления электрода является большая глубина проплавления.
- ГОРЯЧИЙ СТАРТ - функция, которая увеличивает ток при зажигании сварочной дуги, облегчая начало сварки.
- МОЩНОСТЬ ДУГИ - регулировка тока короткого замыкания - приводит к тому, что уменьшение длины дуги сопровождается увеличением сварочного тока, который стабилизирует дугу независимо от колебаний длины.
- HF - прибор оснащен ионизатором, позволяющим осуществлять бесконтактный контроль сварочной дуги.
- ГАЗ ДО И ПОСЛЕ - расход газа до и после сварки.
- НАКЛОН ВВЕРХ и ВНИЗ - повышение и понижение сварочного тока.
- ИМПУЛЬС - импульсный режим сварки.
- VRD - Устройство понижения напряжения - Снижает напряжение холостого хода вторичной цепи устройства. Повышает безопасность и снижает риск поражения электрическим током.
- PFC - Коррекция коэффициента мощности - увеличение коэффициента мощности до значения, максимально близкого к 100%, с целью снижения потерь мощности в линиях электропередачи.
- 2-ТАКТ и 4-ТАКТ,
- бесконтактный розжиг ВЧ и протиркой LIFT ,
- возможно подключение дистанционного управления - педаль управления, ручка с потенциометром,
- ручка двойного действия ADJUST (грубый и точный),
- и другие, описанные в инструкции.ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:
Напряжение питания
1 ~ 230 В 50 Гц
Потребляемая мощность TIG/MMA
6 кВА
Защита с задержкой мин.
20А ТИП С
Класс изоляции
Ф
Степень защиты корпуса
ИП21С
Размеры
575x230x435 мм
Вес
26 кг
ПАРАМЕТРЫ ВИГ
Диапазон сварочного тока WIG DC
3-200 А
Диапазон сварочного тока TIG AC
5-200 А
Эффективность ВИГ 60 %
200А
Эффективность ВИГ 100 %
160А
Форма волны Форма волны
прямоугольные, трапециевидные, треугольные, синусоидальные
Регулировка частоты переменного тока
20–250 Гц
Текущий баланс в режиме переменного тока
5% -95%
Пусковой газ/конечный газ AC/DC режим
0–10 / 0–25 с
Начальный ток / конечный ток, режим постоянного тока
3-200 / 3-200 А
Начальный/конечный ток в режиме переменного тока
5-200 А
Время нарастания/спада в режиме переменного/постоянного тока
0–10 с / 0–10 с
Импульсная база переменного/постоянного тока
3-100%
Длительность импульса переменного/постоянного тока
5% -95%
Смешанная частота тока Advanced AC
0,1–10 Гц
Частота импульсов Стандартный DC
0,1–500 Гц
Частота импульсов Стандарт переменного тока Квадратный (прямоугольный)
0,1–250 Гц
Частота импульсов Стандартный переменный ток Мягкий прямоугольный, треугольный, синусоидальный
0,1–250 Гц
Функция зажигания дуги TIG
HF (ионизатор) / LIFT
ПАРАМЕТРЫ MMA
Напряжение холостого хода MMA/VRD MMA
70/21В
Диапазон сварочного тока MMA DC + / DC-
10–160 А
ММА эффективность 60%
160А
ММА эффективность 100%
130А
ДУГОВАЯ СИЛА
0-100%
ВРЕМЯ ГОРЯЧЕГО СТАРТА
0-2 с
УСИЛИЯ ГОРЯЧЕГО ПУСКА
0-100%
Для всех методов TIG возможны следующие режимы сварки:
* С помощью системы LIFT-ARC (2T и 4T)
* Бесконтактный ВЧ-поджиг (2T и 4T)
* Педаль дистанционного управления (2T и 4T)
* Счетверенный режим не применяется к функциям TIG SPOT и TACПОЛНЫЙ КОМПЛЕКТ ВКЛЮЧАЕТ :
- сварочный аппарат Welder Fantasy JET TIG II AC/DC 200-S IGBT ,
- сварочная горелка PARKER SUREGRIP SGT26 FLEX TIG SRT 26-4m - с регулировкой сварочного тока ,
- держатель груза 3 м ,
- электрододержатель 3 м ,
- инструкция на польском языке и гарантийный талон.
Устройство оснащено промышленной вилкой 230В 32А.
"WELDER FANTASY" ЯВЛЯЕТСЯ ЗАЩИЩЕННОЙ И ЗАРЕГИСТРИРОВАННОЙ ТОВАРНОЙ ЗНАКОМ - см. документ Охранного свидетельства
ВЕРНУТЬСЯ К СПИСКУ ТОВАРОВ .