+7(499) 136 06 90

+7(495) 704-31-86

[email protected]

Виды переменного тока


Военно-техническая подготовка

1.3. Переменный ток


1.3.1. Параметры сигналов переменного тока.

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T - время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f - величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz)

,

Циклическая частота ω - угловая частота, равная количеству периодов за секунд.

,

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ - величина угла от нуля ( ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение - величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t .

,

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.

Например, синусоидальный ток или напряжение можно выразить функцией:

,

С учётом начальной фазы:

,

Здесь I amp и U amp - амплитудные значения тока и напряжения.

Амплитудное значение - максимальное по модулю мгновенное значение за период.

,

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) - максимальное отклонение от нулевого значения.

Среднее значение (avg) - определяется как среднеарифметическое всех мгновенных значений за период T .

,

Среднее значение является постоянной составляющей DC напряжения и тока.

Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение - среднеарифметическое модулей всех мгновенных значений за период.

,

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

,

Среднеквадратичное значение (rms) - определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

,

Для синусоидального тока и напряжения амплитудой Iamp ( Uamp ) среднеквадратичное значение определится из расчёта:

,

Среднеквадратичное - это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

.


1.3.2. Виды модуляции сигналов.

Амплитудная модуляция - вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Пусть

S ( t ) — информационный сигнал, | S ( t ) < 1 |,

Uc ( t ) — несущее колебание.

Тогда амплитудно-модулированный сигнал Uam ( t ) может быть записан следующим образом:

(1)

Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U c ( t ) , модулированный по амплитуде сигналом S ( t ) с коэффициентом модуляции m . Предполагается также, что выполнены условия:

,

Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.

Амплитудной модуляции свойственны следующие существенные недостатки:

1) приему амплитудно-модулированных сигналов сильно мешают индустриальные и атмосферные помехи;

2) в процессе модуляции лампа используется по мощности полностью только при подаче максимального мгновенного модулирующего напряжения, а во все остальное время она недоиспользуется.

Эти недостатки в значительной степени устраняются при частотной и фазовой модуляции.

Рис 1. Амплитудная модуляция с различным коэффициентом модуляции.

Рис 2. Спектр АМ колебания.

Частотная модуляция - вид аналоговой модуляции, при котором информационный сигнал управляет частотой несущего колебания. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.

Основными характеристиками частотной модуляции являются девиация (отклонение) и индекс модуляции .

Девиация частоты (frequency deviation) – наибольшее отклонение значения модулированного сигнала от значения его несущей частоты. Единицей девиации частоты является герц (Hz), а также кратные ему единицы.

Индекс модуляции (modulation index) отношение девиации частоты к частоте модулирующего сигнала.

Колебание называют частотно-модулированным (ЧМ), если частота его изменяется пропорционально передаваемому колебанию (например звуковому) S(t). Следовательно, угловая частота такого колебания должна равняться:

,

где ω 0 и a - некоторые постоянные, которые выбираются так, чтобы частота ω изменялась в желаемых пределах.

Рис 3. Пример частотной модуляции по линейному закону.

Рис 4. Пример частотной модуляции. Вверху — информационный сигнал на фоне несущего колебания. Внизу — результирующий сигнал.

Фазовая модуляция - вид модуляции, при которой фаза несущего колебания управляется информационным сигналом. Фазомодулированный сигнал s(t) имеет следующий вид:

,

где g(t) — огибающая сигнала; φ ( t ) является модулирующим сигналом; f c — частота несущего сигнала; t — время.

Фазовая модуляция, не связанная с начальной фазой несущего сигнала, называется относительной фазовой модуляцией (ОФМ).

Рис 5. Пример фазовой модуляции - двоичная фазовая модуляция BPSK.

Рис 6. AM,FM модуляции.


1.3.3. Особенности цепей переменного тока.

Переменный ток изменяется во времени по синусоидальному закону. Время, за которое совершается полный цикл изменений по величине и направлению, называется периодом. При векторном изображении синусоиды вектор периодически описывает угол а, равный 360° или в дуговом (радианном) измерении равный 2π. Следовательно, первый полупериод оканчивается при α = π, а первое максимальное значение синусоида принимает при π/2. Время, за которое вектор описывает угол 2π [рад], называется периодом и обозначается буквой Т. Число периодов в секунду называется частотой и обозначается буквой f.

Отсюда

[1/сек] ,

За единицу частоты принят герц (гц). Частота промышленной сети переменною тока обычно равна 50 гц.

В теории переменного тока часто приходится иметь дело с круговой частотой

[1/сек] ,

В течение периода переменный ток, изменяющийся. по синусоидальному закону, достигает максимального значения 2 раза (при π/2 и Зπ/2). Максимальное значение тока или напряжения обозначают соответственно буквами Iмакс и, Uмакс. Действующее значение переменного тока равно величине такого постоянного тока, который, проходя через сопротивление, выделяет в нем (за одинаковое время с переменным током) равное количество тепла:

,

.

Следует иметь в виду, что, например, при расчете токовой нагрузки проводов принимается во внимание действующее значение тока. Это положение во многих случаях распространяется и на напряжение. Лишь при расчете изоляции на пробой необходимо учитывать максимальное (мгновенное) значение напряжения, так как пробой может произойти во время прохождения напряжения через максимум. На шкалах измерительных приборов указываются, как правило, действующие значения тока или напряжения.

Резистор в цепи переменного тока

.

Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Физическая величина R называется активным сопротивлением резистора .

Конденсатор в цепи переменного тока

,

.

Соотношение между амплитудами тока IC и напряжения UC :

.

Ток опережает по фазе напряжение на угол π/2.

Физическая величина

называется емкостным сопротивлением конденсатора .

Катушка в цепи переменного тока

,

.

Соотношение между амплитудами тока IL и напряжения UL :

.

Ток отстает по фазе от напряжения на угол π/2.

Физическая величина XL = ω L называется индуктивным сопротивлением катушки .

Какие существуют токи (электрические). Виды тока (постоянный и переменный), их особенности.

Многие должны были слышать, что электрический ток бывает разный (постоянный, переменный). Те, кто особо не знаком с темой электрики и электроники порой могут путаться в типах тока, когда подают электрическую энергию на то или иное электрооборудование. Для одних устройств нужно именно постоянное напряжение (ток), другие же питаются только от переменного. Поскольку эти виды тока принципиально разные, то ошибка при подаче питания может привести к не работе (в лучшем случае), а в худшем варианте просто вывести электрооборудование из строя.

Итак, напомню, что электрический ток представляет собой упорядоченное движение электрически заряженных частиц (электронов) вдоль проводника. То есть, это простое, однонаправленное перемещение очень маленьких частичек (с огромной скоростью) внутри электрических проводников (в большинстве случаев металлов — медь, алюминий, серебро, золото и различных сплавов, хорошо проводящих ток).

 

Само же движение возникает по причине появления определённой разности электрических потенциалов, называемое напряжением. У электрического источника имеются два полюса, положительный (где сосредотачивается положительный заряд некой величины) и отрицательный (где сосредотачивается отрицательный заряд). Если нет замкнутой цепи между полюсами, то имеется только напряжение (стремление зарядов перейти на противоположный полюс). Как только цепь замыкается, появляется путь для прохождения зарядов в виде электрического проводника, то заряды стремительно начинают своё движение, что и создают их ТОК в проводнике.

Основных видов электрического тока существует два — постоянный и переменный (импульсный, это частичный случай переменного). Постоянный ток — это, не что иное как простое однонаправленное перемещение электрических зарядов в одну сторону. От одного полюса к другому без изменения направления во времени. На деле в твёрдых веществах (проводниках) электрический ток течет от минуса к плюсу (происходит перемещение отрицательных зарядов, электронов). В жидких и газообразных средах постоянный ток бежит, наоборот, от плюса к минусу (движение ионов, положительно заряженных частиц). В теоретической области было принято считать, что постоянный электрический ток всегда течет от плюса к минусу (при работе с принципиальными электрическими схемами).

Постоянный ток имеет постоянную величину своего напряжения (обычно наиболее используемые величины 3, 5, 6, 9, 12, 24 вольт). При работе его величина может изменяться всего на несколько процентов, по причине падения напряжения при динамической работе самой нагрузки (к примеру, постоянный электродвигатель, который может иметь плавающую механическую нагрузку на своём вале, ну и т.д.). Для постоянного напряжения (точнее электрических схем, работающие на постоянном типе тока) важно оставаться неизменным. Если схема рассчитана на постоянное напряжение 12 вольт, то и подаваться на неё должно строго 12 вольт с небольшим отклонением в несколько процентов. Для обеспечения этого используются различные решения начиная от правильно подобранных электрических деталей, компонентов, и заканчивая всевозможными электрическими, электронными схемами различных стабилизаторов, фильтров и т.д.

Постоянный ток имеет как свои достоинства, так и свои недостатки. Иначе бы использовался только этот тип электрического тока! Практически все электронные схемы нуждаются в питании именно постоянным током. Сам принцип действия и работа электронных элементов основан на этом виде тока. Также электрические аккумуляторы могут работать только с постоянным током, ну и т.д. Основным недостатком этого вида электротока является плохая передача электроэнергии на значительные расстояния (возникают большие потери). Кроме этого для его преобразования нужны более сложные электрические устройства.

Переменный электрический ток представляет собой упорядоченное, плавно изменяющееся (синусоидальное) движение электрических зарядов вдоль проводника, которое периодически меняет свои полюса. Наиболее распространённой частотой переменного тока является 50 Герц. То есть, за одну секунду направление тока в электрической цепи меняется с плюса на минус и наоборот аж 50 раз. Хотя это считается ещё и низкой частотой. Переменный ток может быть однофазным (используются 2 провода и напряжение между ними 220 вольт) или же трёхфазным (используются 3 фазных провода, напряжение между двумя любыми из них 380 вольт и один нулевой).

Переменный вид тока легко преобразуется и передается на большие расстояния с минимальными потерями на самой линии электропередач. Наиболее используемые величины переменного напряжения, от которых питаются конкретные электроприборы, это 220 вольт (напряжение для бытового использования населением) и 380 вольт (для промышленного использования, где важны именно 3 фазы). Для того, чтобы получить из одной величины тока или напряжения другую величину обычно применяют всего одно устройство, которое называется силовым трансформатором. На его вход подают одни значения напряжения или тока, а на выходе получают другие, более высокие или низкие.

P.S. Частным случаем переменного электрического тока можно считать импульсный ток, который может иметь различную форму, отличной от обычной синусоидальной. Данный вид электрического тока обычно используют в различной цифровой технике, в области электроники.

Урок 8. переменный электрический ток - Физика - 11 класс

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 - мгновенное значение силы тока;

m- амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени - мгновенное значение (помечают строчными буквами - і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um - амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

XL= ωL

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение.   В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

P=IU cosφ

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Найти: T.

Решение:

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

Ответ: T = 0,08 c.

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Дано:

ν=50 Гц,

R=1 кОм=1000 Ом,

C=1 мкФ=10-6 Ф,

U=220 В.

Найти: Im

Решение:

Напишем закон Ома для переменного тока:

I=U/Z

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

Ответ: Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

 Физические величины

    Физические приборы

Сила тока

Омметр

Напряжение

Вольтметр

Сопротивление

Амперметр

Мощность

Ваттметр

Правильный ответ:

 Физические величины

    Физические приборы

Сила тока

Амперметр

Напряжение

Вольтметр

Сопротивление

Омметр

Мощность

Ваттметр

В чем разница между сваркой переменным и постоянным током? – Всё для сварки

Содержание

Если вы уже работали со сваркой или хотя бы немного знакомы с ней, то, скорее всего, слышали термины “AC” и “DC”. AC и DC - это различные типы токов, которые используются в процессе сварки. Поскольку при сварке используется электрическая дуга, создающая тепло, необходимое для расплавления металла, ей необходим стабильный ток с различной полярностью, которая зависит от свариваемого материала.

Чтобы сделать качественный сварной шов, для начала нужно понять, что означают эти два тока на сварочном аппарате, а также на электродах.

Но сначала: в чем разница между сваркой переменным и постоянным током?

Сварка DC и AC относится к полярности тока, проходящего через электрод аппарата. AC означает переменный ток, а DC - постоянный. Прочность и качество сварного шва будут зависеть от полярности электрода.

Что такое полярность?

Скорее всего, вы знакомы с термином "полярность".

Электрические цепи имеют полюса - отрицательный и положительный. В цепи с постоянным током (DC) движение электронов идет в одном направлении от плюса к минусу. Применительно к сварке отрицательный полюс получает меньше тепловой нагрузки.

Переменный ток (AC), как следует из названия, меняется в направлении, в котором он идет. Половину времени он идет в одном направлении, а другую половину - в противоположном. Переменный ток меняет свою полярность примерно 120 раз в секунду при токе 60 Гц.

Прямая полярность при сварке постоянным током дает более глубокое проплавление металла. А обратная полярность отлично подходит для сварки тонколистовых заготовок за счет меньшего тепловложения.

Покрытые электроды иногда могут использовать любую полярность, в то время как некоторые будут работать только на одной.

Качественный сварной шов предполагает правильное проплавление и равномерное наплавление валика, а для этого необходимо использовать правильную полярность. При неправильной полярности вы не только получаете плохое проплавление и неравномерное образование валика, но и чрезмерное разбрызгивание и перегрев, а в некоторых случаях можно даже потерять контроль над дугой.

Электрод также может быстро сгореть.

Большинство сварочных аппаратов для дуговой сваркиимеют обозначенные клеммы или направления, чтобы сварщики точно знали, как настроить сварочный аппарат на переменный или постоянный ток. Некоторые сварочные аппараты также используют переключатели для изменения полярности, а некоторые требуют переподключение клемм кабеля.

Сварка различными токами

Различные типы сварных швов требуют разного вида токов из-за природы их возникновения и оказываемого ими воздействия.

Сварка переменным током

Сварка переменным током считается уступающей сварке постоянным током и поэтому используется редко. Сварочные аппараты переменного тока чаще всего используются только при отсутствии аппаратов постоянного тока.

Сварку переменным током чаще всего используют для соединения толстолистового металла, быстрой наплавки и TIG-сварки с высокой частотой, хотя иногда она также используется для устранения проблем, связанных со сварочной дугой. Проблемы с дугой возникают, когда она прерывает сварное соединение, которое должно свариваться при более высоких уровнях тока, что происходит в основном при работе с электродами, имеющими большой диаметр.

Сварка переменным током также может использоваться для намагниченных металлов, что невозможно при сварке постоянным током. Постоянное изменение направления тока при сварке переменным током означает, что намагниченный металл не будет влиять на электрическую дугу.

Переменный ток также лучше подходит при работе с высокими температурами. Так как он обеспечивает высокий уровень тока, что создает глубокий провар, и поэтому используется для сварки при строительстве кораблей.

Сварка переменным током хорошо подходит для ремонта оборудования, так как многие из них имеют намагниченные поля и участки, подвергшиеся ржавчине.

Однако, нестабильность направления при сварке переменным током также может быть недостатком в том, что процесс имеет меньшую производительность, чем при сварке постоянным током.

Сварка постоянным током

Сварка постоянным током, как и сварка переменным током, имеет свои преимущества, и используется в случаях, когда сварка переменным током не может обеспечить должного результата, например, вертикальная сварка, пайка одним припоем или TIG-сварка нержавеющей стали.

Сварка на постоянном токе имеет более высокую скорость осаждения, она лучше всего подходит для сварщиков, которым требуются большие размеры наплавленного слоя. Несмотря на то, что сварка переменным током обеспечивает лучшее проплавление, она имеет более низкую скорость осаждения, что может быть непригодно.

При сварке постоянным током образуется также меньше брызг, чем при сварке переменным током, что делает сварочный шов более равномерным и гладким. Постоянный ток также является более надежным, и поэтому с ним легче работать, так как электрическая дуга остается стабильной.

Сварка постоянным током часто используется для сварки тонких металлов. Оборудование, работающее с этим типом тока, также дешевле, что помогает сократить расходы.

Однако, несмотря на то, что само оборудование имеет более низкую стоимость, процесс фактического использования постоянного тока немного дороже.

Это происходит из-за того, что необходимо специальное оборудование для преобразования переменного тока на постоянный, потому что это не предусмотрено электрической сетью. Однако, поскольку постоянный ток лучше подходит для большинства видов сварочных процессов, эти затраты считаются необходимыми.

Хотя сварка постоянным током лучше для многих металлов, она не рекомендуется при работе с алюминием, так как для этого требуется выделение тепла высокой интенсивности, что невозможно при использовании постоянного тока. Кроме того, если при работе с постоянным током будет создаваться магнитное поле, то возрастет риск дугового разряда, что может быть опасно.

Какой электрод использовать?

Так как вид используемого тока влияет на полярность на электроде, надо учитывать используемый электрод.

Для сварки методом TIG чаще применяют постоянный ток прямой полярности. Иногда также используют ток обратной полярности или переменный ток. В этих случаях применяют вольфрамовые электроды с легирующими добавками для улучшения стабильности дуги.

Например, используют:

  • WP - вольфрамовые электроды для сварки на переменном токе;
  • WL-20 и WL-15 - легированные вольфрамовые электроды для сварки на постоянном и переменном токах.

Для ММА сварки в основном использую покрытые плавящиеся электроды.

В настоящее время производители выпускают электроды с четырьмя видами обмазки:

  • Кислое (маркировка “А”). В его составе железо и марганец в довольно большом объеме. Можно сваривать неочищенный металл.
  • Основное (маркировка “Б”). Эти электроды можно использовать для работы на переменном токе, но из-за малого потенциала ионизации не рекомендуется этого делать.
  • Рутиловое (маркировка “Р”). Лучше всего подходит для работы на переменном токе. Небольшое разбрызгивание металла и хорошее качество шва.
  • Целлюлозное (маркировка “Ц/С”). Подходит для работы на переменном и постоянном токе, но выдает много брызг металла.

Существует несколько различных видов электродов для сварки переменным током, но многие из них могут использоваться как для сварки переменным током, так и для сварки постоянным током.

Выбор правильной полярности и тока, а также правильного электрода может иметь решающее значение для выполнения хорошего сварного шва.

Электрические цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток — это вынужденные колебания тока в электрических цепях.
Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.
Периодом называется время, в течение которого происходит полное колебание тока в проводнике.
Частота — величина, обратная периоду.
Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.
Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

где
— амплитуда;
— начальная фаза;
— угловая скорость вращения ротора генератора.
При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы. Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.
При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:


где

Тогда


где

— поворотный множитель;
— комплексная амплитуда напряжения;
— сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Вектор напряжения на комплексной плоскости
Так как в цепи с синусоидальным напряжением ток тоже будет подчиняться этому закону, то аналогично можно записать


где
— комплексная амплитуда тока; *
— сопряженная комплексная амплитуда тока.
Разделив напряжение на ток, получим закон Ома в комплексном виде:

При напряжение на сопротивлении согласно закону Ома . Таким образом, следует отметить, что на активном сопротивлении напряжение и ток совпадают по фазе и (см. рисунок).

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:



При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.
Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

откуда



При синусоидальном законе действующие значения тока и напряжения:



Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов

Кривые напряжения и тока в индуктивном сопротивлении

Напряжение на индуктивности определяется выражением


где

-индуктивное сопротивленияе
Индуктивное сопротивление выражают в омах, оно играет роль сопротивления в цепи переменного тока с катушкой индуктивности.
В идеальной индуктивности ток отстает от напряжения на 90°.

Если напряжение на емкости меняется по закону синуса , то


-емкостное сопротивление.
Емкостное сопротивление выражается в омах, оно играет роль сопротивления в цепи переменного тока с конденсатором.
Кривые напряжения и тока в емкостном сопротивлении
В идеальной емкости ток опережает напряжение на 90°


Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:



Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:



где
— ток принужденного режима при di/dt=0
— ток свободного режима.
Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.
При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.
В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Мощность цепи переменного тока

В периодическом синусоидальном режиме

Используя известное тригонометрическое преобразование



и обозначив , получим

Среднее за период значение гармонической функции удвоенной частоты равно нулю.
Измерение мгновенного значения мощности переменного тока затруднено из-за сравнительно большой частоты колебаний (v = 50 Гц). Поэтому на практике принято пользоваться средней мощностью тока. Средняя мощность — это отношение энергии, потребляемой за один период, к периоду:

где
— энергетическое значение коэффициента мощности,

Потребляемая на участке цепи с резистором средняя мощность получила название активной мощности. Она необратимо преобразуется в джоулеву теплоту и другие виды энергии. Мощность, потребляемую на участках цепи с емкостным и индуктивным сопротивлениями, называют реактивной мощностью.
При передаче электрической энергии по цепи переменного тока ее необратимые преобразования происходят только на тех участках цепи, которые содержат резисторы. Такие участки цепи называют активной нагрузкой. На активной нагрузке электроэнергия превращается в теплоту или механическую работу.
Участок цепи с индуктивностью или емкостью называют реактивной нагрузкой. На участках цепи, которые состоят из чистых емкостных или индуктивных сопротивлений, электроэнергия не потребляется. В цепи с реактивными нагрузками происходит только перекачка энергии от генератора к нагрузке и обратно с неизбежными потерями в подводящих проводах.

 

При заданных Р и U ток является функцией cosj. Потери мощности на сопротивлении
В цепи с резистором j=0.

Коэффициент мощности cosj показывает, какая часть полной мощности, вырабатываемой генератором и передаваемой нагрузке, необратимо используется нагрузкой. Он играет важную роль в электротехнике. В самом деле, если в цепи имеется значительный сдвиг по фазе между колебаниями тока и э. д. с, то коэффициент мощности мал и нагрузка потребляет от генератора малую активную мощность. Вместе с тем генератор должен вырабатывать полную мощность S. Эту же мощность должен отдавать генератору первичный двигатель. Таким образом, при низком коэффициенте мощности нагрузка потребляет лишь часть энергии, которую вырабатывает генератор. Оставшаяся часть энергии перекачивается периодически от генератора к потребителю и обратно и рассеивается в линиях электропередачи.
Максимально благоприятные условия передачи электроэнергии создаются в цепи, работающей в режиме резонанса. В самом деле, при приближении к резонансу амплитуда силы тока оказывается максимальной и коэффициент мощности стремится к единице. В этом случае активная мощность приближается к полной мощности, т. е. достигает максимума.
Повышение к. м. является важной народнохозяйственной задачей, от решения которой зависит эффективность использования вырабатываемой электроэнергии.
Уменьшение к. м. в промышленных цепях происходит в основном за счет содержащихся в них трансформаторов и асинхронных электродвигателей, имеющих значительные индуктивные сопротивления. Поэтому повысить к. м. при таких нагрузках можно путем подключения параллельно основной цепи компенсирующих конденсаторов, позволяющих приблизиться к режиму резонанса токов.
С целью повышения к. м. и экономии электроэнергии не следует допускать холостого хода (т. е. работы без нагрузки) трансформаторов и асинхронных электродвигателей, ибо в этом случае они представляют собой чисто индуктивные сопротивления и вызывают дополнительные потери мощности.
Коэффициент мощности (к. м.) ни в коем случае нельзя путать с коэффициентом полезного действия (к. п. д.). Так, например, при определенном соотношении емкости и индуктивности коэффициент мощности в данной цепи может оказаться равным единице. Коэффициент же полезного действия цепи всегда меньше единицы.

Мощность цепи переменного тока

 



Мощность в активном сопротивлении

Мгновенное значение мощности для цепи с резистором:

Из рисунка видно, что потребляемая резистором мгновенная мощность остается все время положительной, но пульсирует с удвоенной по отношению к силе тока и э. д. с. частотой.

Действующее значение мощности:

Активная мощность в цепи с идеальной катушкой индуктивности и конденсатором равна 0. Реактивная мощность определяется выражением:

Аналогично можно проделать для цепи с идеальным конденсатором:

В произвольной цепи переменного тока потребляемая одновременно активной и реактивной нагрузками суммарная мощность

Но так как , следовательно, . Мы приходим к выводу, что суммарная средняя мощность, потребляемая полной цепью переменного тока, равна активной мощности.

где S — полная мощность, вырабатываемая генератором переменного тока, ВА;
a — сдвиг по фазе между колебаниями э. д. с. и силы тока.

 

Инвертор постоянного или переменного тока: какой лучше выбрать

С момента своего появления и по сегодняшний день сварка прочно удерживает первенство в процессах соединения различных деталей, изделий и элементов металлических конструкций. Такая широкая сфера применения требует большого количества методов и технологий. Для того чтобы иметь возможность варить значительный ассортимент металлов, используют различные виды сварочных токов.

1 / 1

С момента своего появления и по сегодняшний день сварка прочно удерживает первенство в процессах соединения различных деталей, изделий и элементов металлических конструкций. Такая широкая сфера применения требует большого количества методов и технологий. Для того чтобы иметь возможность варить значительный ассортимент металлов, используют различные виды сварочных токов.

Виды сварочного тока

Сварочные трансформаторы выдают на выходе переменный ток (AC) сетевой частоты, то есть 50 герц. Скажем откровенно: сваривание металлов таким способом – процесс достаточно проблематичный. Во-первых, требуются сварщики высокой квалификации, во-вторых, шов получается недостаточно качественным.

Изменение напряжения дуги 100 раз в секунду приводит к соответствующим изменениям в скорости переноса расплавленного металла и температуры сварочной ванны. Результатом этих процессов станет разбрызгивание металла и неравномерность провара. Кроме того, такому виду сваривания свойственен уход шва в сторону.

Лучшие показатели получаются при ведении сварки постоянным (DC) током как прямой, так и обратной полярности (для подключения обратной полярности «+» и «-» источника меняют местами).

Постоянный ток можно получить от сварочного трансформатора с дополнительным силовым выпрямителем. Но, как вы понимаете, это вызовет лишние расходы. Наилучшие возможности предлагают нам инверторы. Здесь можно получить на выходе как переменное, так и постоянное напряжение.

Переменное напряжение сварочных инверторов имеет высокую частоту, за счет чего параметры дуги становятся более стабильными и по своим характеристикам приближаются к параметрам дуги постоянного тока. Некоторые металлы и сплавы можно варить только переменным током, например, алюминий, который имеет очень специфическую оксидную плёнку на поверхности. Эта плёнка может быть разрушена только переменным током. Таким образом, на сегодняшний день мы имеем широко востребованными три вида сварочного тока:

  • высокочастотный переменный;

  • постоянный прямой полярности;

  • постоянный обратной полярности.

Инверторы постоянного и переменного тока

Устройство и отличие

Рассмотрим принцип работы инвертора переменного тока. Преобразование сетевого напряжения в сварочное происходит в следующей последовательности. Вначале оно выпрямляется и поступает на преобразователь, который генерирует высокочастотную последовательность импульсов. Основная идея состоит в том, чтобы на понижающий трансформатор подать напряжение сети 220 вольт с частотой не 50 Гц, а 30 – 70 кГц.

В этом случае значительно снижаются габариты и вес трансформатора. Для того чтобы вы смогли представить себе эту колоссальную разницу, приведем пример: трансформатор мощностью около 5000 Вт, преобразующий напряжение частотой 50 Гц, будет весить около 20 килограммов. Трансформатор такой же мощности, но работающий на частоте 50 кГц будет весить 250грамм. Что вы выберете?   

Далее пониженное до 60 вольт напряжение поступает на сварочный электрод с выхода трансформатора.

Инвертор постоянного тока в большей части повторяет схему инвертора переменного тока. Но на выходе добавлен выпрямитель, который преобразует выходное переменное напряжение в постоянное. 

Что выбрать

С отличиями в устройстве этих типов источников питания для сварочных процессов мы разобрались. Но, по большому счёту, для большинства пользователей устройство источника питания представляет слабый интерес. Более важным для него является назначение различных источников и области их применения. Это и станет, в конце концов, решающим при выборе.

Постарайтесь выбрать сварочный источник питания, который можно подключить к существующей сети без риска её перегрузки. Кроме того, назначение источника должно соответствовать работам, которые вы собираетесь выполнять с его помощью. Для правильного выбора ознакомьтесь с особенностями сваривания различных металлов. 

Отличается ли сварка переменным и постоянным током

Сваривание металлов постоянным током, полученным от инверторных преобразователей, позволяет получить качественный сварной шов даже сварщикам невысокой квалификации. Отсутствие изменений направления и силы тока, свойственные переменному напряжению, обеспечивают ровное и стабильное горение дуги, что приводит к увеличению глубины проплавления металла и создаёт условия увеличения механической прочности сварного соединения.

Ещё одно существенное преимущество сварки постоянным током - уменьшение разбрызгивания металла, которое экономит электроды, присадочные материалы и повышает производительность труда за счёт уменьшения объёмов работ по зачистке швов.

Инверторные преобразователи входят в состав различных аппаратов как источники питания. Аппараты ручной дуговой сварки прекрасно справляются со свариванием стальных и чугунных деталей. Для сваривания нержавеющих сталей и цветных металлов, лучше использовать аппараты аргонно-дуговой сварки. Автомобильный кузов обычно ремонтируют точечной сваркой на базе того же инвертора постоянного тока.

Обратная полярность напряжения имеет свои преимущества и недостатки, в сравнении со свариванием постоянным напряжением прямой полярности. Для реализации этого метода требуются специальные электроды или проволока (в случае работы на полуавтомате). Принятие решения об использовании той или иной полярности зависит от особенностей процесса и вида сварочного оборудования.

Сварку переменным током используют для соединения тугоплавких металлов. В современной практике этот вид применяется для сваривания деталей, имеющих загрязнённую поверхность. Так иногда случается, что очистить деталь либо невозможно, либо очень сложно. Этот метод хорошо справляется с оксидными плёнками на поверхности металлов, даже на алюминии. На крупносерийных производствах сваривание переменным током используют как способ снижения себестоимости работ на изделиях, не требующих особой точности шва.

Делаем выводы: каждый вид имеет место в производстве, но наиболее универсальным и подходящим для дома, гаража, дачи является сварка изделий постоянным током, получаемым от сварочных инверторов. В подтверждение справедливости наших выводов можно привести статистические данные, говорящие о том, что 95,9 % сварочных аппаратов, купленных в Москве в прошлом году, составили аппараты на основе инверторов постоянного тока. Приобрести инверторные аппараты постоянного тока вы можете от производителя КЕДР на официальном сайте:

Синусоидальный ток и его характеристики

Лекция №3 Синусоидальный ток и его характеристики

Цепи переменного тока широко применяются в электротехнике и электронике. В отличие от цепей постоянного тока в них действуют периодически изменяющиеся ЭДС. Наиболее распространенные формы периодических ЭДС показаны на рис.3.1.

Рис. 3.1. Виды периодически изменяющихся ЭДС

Переменные ЭДС изменяются во времени как по величине, так и по направлению. Если эти изменения повторяются через равные промежутки времени, то они называются периодическими, а время повторения - периодом – Т (рис 3.1). Период измеряется в секундах.

Величина обратная периоду, называется частотой изменения ЭДС, и измеряется в герцах:

.

Диапазон применяемых частот весьма широк, от нескольких герц до нескольких гигагерц: генераторы электрических станций – 50 Гц; ЭВМ от 100 МГц до 1 ГГц.

Наиболее распространены цепи, находящиеся под воздействием синусоидальных ЭДС, поэтому в электротехнике под термином «цепи переменного тока» подразумевается, что в цепи действуют именно синусоидальные ЭДС.

Широкое распространение синусоидальных ЭДС объясняется наиболее простым способом их получения в электромашинных генераторах переменного напряжения в результате вращения токопроводящих рамок в постоянном магнитном поле.

Величина ЭДС зависит от магнитной индукции – В, скорости движения проводника в магнитном поле – V, его длины – l и угла пересечения проводником магнитных силовых линий:

где: е – мгновенное значение ЭДС;

2 – два плеча рамки, т. е. ее диаметр;

В – магнитная индукция;

V – линейная скорость движения проводников рамки;

l – длина рамки;

sin a – синус угла между направлением движения проводника рамки и направлением магнитной индукции.

Мгновенные значения ЭДС – е, тока – i, напряжения u – обозначаются строчными буквами.

При равномерном вращении рамки линейная скорость постоянна и равна:

.

где: D - диаметр рамки;

ω - угловая частота вращения рамки, которую можно выразить:

.

Тогда угол между направлением магнитной индукции и направлением движения проводника изменяется пропорционально времени:

,

тогда ЭДС будет равна:

.

Наибольшего значения ЭДС достигает при:

,

т. е. .

Следовательно:

,

где: Ет – амплитуда ЭДС, т. е. ее максимальное значение (рис 3.1).

В общем случае, если за начало отсчета принять произвольный угол – ψ, эта формула примет следующий вид:

,

где аргумент синуса - фаза – характеризует состояние колебания в данный момент времени. При t = 0 ψ – начальная фаза (рис 3.2).

Рис. 3.2

Таким же образом выражаются мгновенные значения токов, напряжений и других изменяющихся по синусоидальному закону величин.

Любая синусоидальная функция вполне определяется угловой частотой – ω; фазой – ψ; амплитудой – Ет, Uт, Iт.

Действующее значение тока и напряжения

Для оценки эффективности действия переменного тока используют его тепловое или электродинамическое действие и сравнивают с аналогичным действием постоянного тока за один и тот же интервал времени, равный одному периоду.

Значение периодического тока, равное значению такого постоянного тока, который за время одного периода производит тот же тепловой или электродинамический эффект, что и периодический ток называется действующим значением периодического тока.

Действующие значения тока, ЭДС и напряжения обозначают прописными буквами без индексов:

I; E; U.

Тепловой эффект пропорционален квадрату тока, то есть при постоянном токе количество тепла за период Т, выделяемое в резистивном элементе R, определяется по закону Джоуля-Ленца:

,

А при переменном токе

.

Тогда:

.

Решая это уравнение относительно I получим

.

Эта зависимость действующего значения от амплитудного справедлива для ЭДС и напряжения:

Электроизмерительные приборы электромагнитной, электродинамической, электростатической и тепловой систем, а также современные цифровые приборы измеряют действующие значения периодических токов и напряжений.

Представление синусоидальных величин векторами и комплексными числами

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями и представить в виде вращающихся векторов на комплексной плоскости.

Рассмотрим вопрос об изображении синусоидальных величин векторами на комплексной плоскости.

Комплексное число имеет действительную и мнимую части. По оси абсцисс будем откладывать действительную часть комплексного числа, а по оси ординат - мнимую часть.

Условимся на оси действительных значений ставить знак ±1, а мнимых ±ј, где .

Комплексное число изображается на комплексной плоскости вектором, численно равным единице и составляющем угол α с осью вещественных значений (осью +1) (рис 3.3). Из курса математики известна формула Эйлера для комплексных чисел:

.

Модуль функции равен единице:

Проекция функции на ось +1 равна , а проекция этой функции на ось +j равна . Возьмем теперь функцию . Очевидно, что

.

На комплексной плоскости эта функция, также как и функция изобразится под углом α к оси +1, но величина вектора будет в раз больше.

Угол α может быть любым, в том числе изменяться прямо пропорционально времени. Тогда

.

Слагаемое представляет собой действительную часть выражения , а слагаемое его мнимую часть.

Для единообразия принято изображать на комплексной плоскости векторы синусоидально изменяющихся во времени величин для момента времени ωt=0.

Тогда вектор будет равен

,

где - вектор – то есть комплексная величина, модуль ее равен , а угол, под которым вектор проведен к оси +1 на комплексной плоскости равен начальной фазе ψ. еще называют комплексной амплитудой тока i.

Изображение векторов токов и напряжений электрической цепи на комплексной плоскости позволяет произвести их геометрическое сложение и вычитание, дает наглядное представление об их величине и взаимном расположении.

Совокупность векторов на комплексной плоскости изображающих собой синусоидально изменяющиеся функции одной и той же частоты, построенные с соблюдением правильной ориентации относительно друг друга, называется векторной диаграммой.

Применение комплексных чисел позволяет от геометрического сложения векторов на векторной диаграмме перейти к алгебраическому действию над комплексными числами этих векторов. При этом расчеты цепей переменного тока производят теми же методами, что и цепи постоянного тока.

Расчет электрических цепей переменного тока методом комплексных чисел (символическим методом).

Суть метода комплексных чисел заключается в том, что каждый вектор тока или других величин - , , а дальше мы рассмотрим и сопротивлений, раскладывается на составляющие и представляющие проекции вектора на оси комплексной плоскости (рис 3.4). Проекцию вектора на мнимую ось обозначают символом – j. Тогда можно записать:

Умножение вектора на символ j поворачивает этот вектор на угол 90º против часовой стрелки. Умножение вектора на j2 поворачивает вектор на 180º, т. е. откуда . Символ j – это мнимая единица.

Действующие значения токов и напряжений в комплексной форме обозначаются заглавными буквами, над которыми ставят точку или черту.

Применяют три формы записи комплексных величин:

1. Алгебраическая форма

;

2. Тригонометрическая форма

;

3. Показательная форма

Для перехода от одной формы записи к другой применяются соотношения:

- для перехода от алгебраической формы записи к показательной;

и наоборот - это вытекает из формулы Эйлера.

Алгебраическую форму записи комплексных чисел удобно применять при сложении и вычитании векторов, а показательную при делении и умножении.

Таким образом, синусоидальные величины можно рассматривать как векторы, модули которых равны соответствующим комплексным амплитудам (или действующим значениям) вращающиеся против часовой стрелки с угловой частотой ω. Отметим, что в практических расчетах обычно принимают t = 0 и рассматривают лишь статическое взаимное расположение комплексных ЭДС, токов и напряжений.

Переменный ток - Medianauka.pl

Переменный ток - это ток, мгновенная сила которого изменяется со временем.

Если ток не меняется со временем, это постоянный ток .

Классификация переменного тока

Различают следующие (более важные) типы переменного тока:

  • непериодические текущие ,
  • периодический ток ,
    • пульсации тока,
    • переменного тока,
      • переменный синусоидальный ток,
      • переменного тока треугольной формы,
      • прямоугольный переменный ток.

Часто термин «переменный ток» применяется к периодическому переменному току с синусоидальной формой волны, но это не строгий термин, так как термин «переменный ток» имеет более широкое значение.

Непериодический ток

Непериодический ток - это ток, зависимость силы от времени которого не выражается периодической функцией. Примером такого тока является ток зарядки конденсатора, удар молнии.

Периодический ток

Периодический ток - это ток, сила которого в зависимости от времени может быть описана периодической функцией.

В случае периодического тока мы определяем член периода T. Это минимально возможный интервал времени, в котором возникает зависимость I (t) = I (t + Δt) . Другой термин - частота f = 1 / T , измеренная в герцах (Гц), которая описывает, сколько раз за одну секунду ток изменяет цикл.

Примеры

Вот примеры периодических токов:

Ниже приведена диаграмма изменения интенсивности во времени для пульсирующего тока , полученного в результате выпрямления двухполупериодного тока.

Дельта-ток:

Прямоугольный ток:

Синусоидальный переменный ток :

Обычно в промышленных электрических сетях используется синусоидальный переменный ток .

Синусоидальный переменный ток очень легко генерируется с помощью так называемого генератора. Желательно, чтобы среднее значение постоянного тока было равно нулю.

Синусоидальное напряжение переменного тока определяется по формуле:

U = U 0 sinωt

где:

  • U - мгновенное напряжение,
  • U 0 - максимальное напряжение,
  • т - время,
  • ω - круговая частота, равная 2π / T или 2π f, где T - период и f - частота.

Сила переменного тока синусоидально в простой цепи с электрическим сопротивлением R определяется по формуле:

I = I 0 sinωt

где:

  • I - мгновенная интенсивность,
  • I 0 - максимальная интенсивность,
  • т - время,
  • ω - круговая частота.

Вопросы

Есть ли в розетке постоянный или переменный ток?

Переменная.В Польше параметры переменного тока следующие: напряжение 230 В и частота 50 Гц.

Могу ли я преобразовать постоянный ток в переменный?

Да. Для этого используются различные приспособления. Один из них - инвертор.

© medianauka.pl, 2021-07-17, ART-4107

RMS напряжение и ток

RMS напряжение равно напряжению постоянного тока, которое, протекая в той же электрической цепи, будет излучать мощность на приемнике равную к средней мощности, рассеиваемой переменным током.


.

Сравнение переменного и постоянного тока - питание постоянного тока (распределение электроэнергии)

В традиционных системах электроснабжения центров обработки данных используется источник бесперебойного питания (ИБП) с двойным преобразованием, который может переключаться в «эко» режим, когда эффективность системы выше и ниже. потеря энергии. В этом режиме схема двойного преобразования (AC-DC и DC-AC) отключена.

Однако и в этом случае внутренние потери все же возникают. Причем в системах уровня 1–3 нагрузка ИБП не превышает 70-80% номинальной нагрузки, в системах уровня 4 она обычно не превышает 30-40% номинальной нагрузки.И это часто диапазоны, в которых операция двойного преобразования менее эффективна. Следовательно, работа в экономичном режиме увеличивает общую энергоэффективность за счет сокращения времени работы в режиме двойного преобразования. Многие операторы сознательно выбирают «эко» режим, чтобы снизить эксплуатационные расходы.

Системы

, основанные на ИБП с двойным преобразованием, также требуют обширных электрических установок, часто соединенных параллельно, для достижения надежности 99,9%, резервирования N + 1 или повышенной готовности.По-прежнему необходимы дополнительные разветвители и блоки питания, адаптирующие ток к требованиям сервера.

В отличие от системы переменного тока с двойным преобразованием, в системе постоянного тока используется только одно преобразование переменного тока в постоянное, а постоянный ток распределяется непосредственно по стойкам, что упрощает электромонтаж и обеспечивает соблюдение требований к надежности и времени готовности.

Меньшее количество точек преобразования означает меньше отходов, меньше шансов на сбой, что приводит к большей стабильности и надежности, меньшему риску сбоев и более быстрому восстановлению системы.

Меньшее количество компонентов также означает меньшие затраты на установку и обслуживание и позволяет лучше использовать пространство в серверной.

Телекоммуникационные центры успешно питаются от 48 В постоянного тока на протяжении десятилетий. Однако для современных центров обработки данных с гораздо более высоким энергопотреблением 48 В постоянного тока недостаточно. ABB разрабатывает архитектуру питания 380 В постоянного тока в сотрудничестве с другими крупными компаниями. Он проводит исследования в этом направлении и запустил ряд пилотных проектов.В результате эта система приобретает все большую популярность, дополняя системы, предлагаемые ABB, работающие на переменном токе.

.

Переменный ток - Основы | Мацей Долата: Практическая электротехника

Это не вопрос, который появляется на экзамене SEP, но перед его сдачей стоит запомнить основы (их должен знать каждый электрик). Переменный ток (AC) - это характерный случай периодически переменного тока, при котором мгновенные значения периодически изменяются с определенной частотой. Мгновенные значения принимают попеременно положительные и отрицательные значения.Наиболее распространенный переменный ток - это синусоидальный переменный ток, поэтому на техническом жаргоне переменный ток означает переменный ток с синусоидальной волной. Синусоидальный ток используется в энергетике.

Форма сигнала синусоидального тока

Характерные величины синусоидального тока:

1. Мгновенное значение:

Где:

I м - максимальное значение, амплитуда,

ω - пульсация, угловая частота ,

т - время.

- текущая начальная фаза

2. Период синусоидального тока

3. Пульсация

4. Частота

5. RMS

На практике мы используем действующие значения токов и напряжений. Электромагнитные и электродинамические измерители измеряют среднеквадратичное значение. Если сказано, что в розетке есть напряжение 230В, т.е.что это действующее значение синусоидального переменного напряжения.

6. Электропитание переменного тока

Есть три типа питания переменного тока:

Активная мощность: P = U · I · cosφ [Вт ]

Реактивная мощность: Q = U · I · sinφ [вар]

Полная мощность: S = U · I [ВА]

Взаимосвязь между державами:

В приведенных выше формулах:

U - действующее значение напряжения,

I - действующее значение тока,

φ - угол сдвига фаз между током и напряжением,

Коэффициент мощности

, который говорит нам, какая часть полной полной мощности является активной мощностью.

Трехфазный переменный ток

Трехфазный переменный ток - это система трех синусоидальных переменных токов, сдвинутых друг относительно друга на угол 120 °.

В сбалансированных системах сумма токов в трех фазах равна нулю.

Существуют две основные системы подключения нагрузки для трехфазного тока:

1. Соединение звездой - маркировка Y
Соединение звездой (Y)

Междуфазное напряжение:

Линейный ток:

Индекс f обозначает фазное напряжение и ток.

2. Соединение треугольником - маркировка D
Соединение треугольником (D)

Мощность в трехфазных симметричных системах

На практике, кроме фазных проводов и нейтрального проводника (N), используется еще и защитный провод (PE - желто-зеленого цвета). Защитный провод не подвержен токам нагрузки и соединяет доступные токопроводящие части с заземляющим электродом. Он используется для защиты путем автоматического отключения питания.

(Посещали 13672 раза, сегодня 1 посещали)

.

переменного тока

Переменный ток - это электрический ток, который циклически меняет свое направление и силу. Как правило, изменения силы переменного тока происходят синусоидальным образом, поскольку он обычно вырабатывается генераторами , которые работают на основе явления электромагнитной индукции .

На рисунке показана электрическая цепь, расположенная в однородном магнитном поле с индукцией B. Поток магнитного поля , рассчитанный по площади S контура, равен:



Поскольку значения индукции магнитного поля и площади контура не могут быть изменены, изменение потока поля может быть только следствием изменения угла α. Предполагая, что движение по окружности является равномерным круговым движением, угол α может быть выражен круговой частотой ω (α = ωt).
Согласно закону индукции Фарадея , индуцированная электродвижущая сила (SEM) пропорциональна скорости изменения магнитного потока:

Последнее уравнение показывает, что электродвижущая сила изменяется в синусоидальным образом.Максимальное значение SEM составляет:

, следовательно, формулу для электродвижущей силы в момент времени t также можно записать в виде:

Если в данной цепи единственным приемником переменного тока является сопротивление R, то закон

.

Разница между переменным током (AC) и постоянным током (DC)

В проводящих материалах есть свободные электроны, которые переходят от одного атома к другому, когда в них применяется разность потенциалов. Этот поток электронов в замкнутой цепи называется током. В зависимости от направления движения электронов в замкнутой цепи электрический ток в основном делится на два типа: переменный ток и постоянный ток.

Одно из основных различий между постоянным и переменным током состоит в том, что в переменном токе полярность и величина тока меняются через равные промежутки времени, в то время как в постоянном токе они остаются постоянными.Некоторые различия поясняются ниже в виде сравнительной таблицы с учетом различных факторов;

Содержание: Переменный ток (AC) Постоянный ток Vs (DC)

  1. Таблица сравнения
  2. Определение
  3. Ключевые отличия
  4. Запомните

Таблица сравнения

База Переменный ток Постоянный ток
Определение Направление тока периодически меняется на противоположное. Направление тока остается прежним.
Причины потока электронов Вращение катушки в однородном магнитном поле или вращение однородного магнитного поля в неподвижной катушке Постоянное магнитное поле поперек провода
Частота 50 или 60 герц Ноль
Направление электронного потока. Двунаправленный Однонаправленный
Коэффициент мощности В пределах от 0 до 1 Всегда 1
Полярность Имеет полярность (+, -) У вас нет полярности
На основе Генераторы переменного тока Генераторы, батареи, солнечные элементы и т. Д.
Тип нагрузки Их нагрузка резистивная, индуктивная или емкостная. Их нагрузка обычно резистивная.
Графическое представление Он представлен нерегулярными волнами, такими как треугольная волна, прямоугольная волна, прямоугольная волна, синусоидальная волна. Представлен прямой линией.
Передача Может передаваться на большие расстояния с некоторыми потерями. Может передаваться на очень большие расстояния с небольшими потерями.
Кабриолет Легко преобразовать в постоянный ток Легко преобразовать в переменный ток
Подстанция Для генерации и передачи требуется небольшая подстанция Для генерации и передачи требуется больше подстанций
Пассивный параметр Импеданс Сопротивление
Harazdous Опасно Очень опасно
Заявка Заводы, промышленность и бытовое назначение. Гальваника, электролиз, электронное оборудование и т. Д.

Определение переменного тока

Ток, который периодически меняет направление, называется переменным током. Их размер и полярность со временем меняются. В этом типе тока свободные электроны (электрический заряд) движутся как вперед, так и назад.

Частота (количество циклов, завершенных за одну секунду) переменного тока составляет от 50 до 60 Гц в зависимости от страны.Переменный ток легко преобразуется из высокого в низкий и наоборот с помощью трансформатора. Таким образом, он в основном используется для трансляции и распространения.

Определение постоянного тока

Когда электрический заряд внутри проводника течет в одном направлении, этот тип тока называется постоянным током. Величина постоянного тока всегда остается постоянной, а частота тока равна нулю. Он используется в сотовых телефонах, электромобилях, сварке, электронном оборудовании и т. Д.

Графическое представление переменного тока показано на рисунке ниже.


Ключевые различия между переменным и постоянным током

  • Ток, который через определенные промежутки времени меняет свое направление, этот тип тока называется переменным током. Постоянный ток однонаправлен или течет только в одном направлении.
  • Заряжает в потоке переменного тока, вращая катушку в магнитном поле или вращая магнитное поле в неподвижной катушке.При постоянном токе заряды текут, поддерживая постоянный магнетизм вдоль провода.
  • Частота переменного тока составляет от 50 до 60 Гц в зависимости от национального стандарта, в то время как частота постоянного тока всегда остается нулевой.
  • Коэффициент мощности переменного тока варьируется от нуля до единицы, в то время как коэффициент мощности постоянного тока всегда остается равным единице.
  • Генератор переменного тока вырабатывает ток генератора. Постоянный ток вырабатывается генератором, батареей и элементами.
  • Нагрузка переменного тока бывает емкостной, индуктивной или резистивной. Нагрузка постоянного тока всегда резистивная.
  • Переменный ток может быть графически представлен различными нерегулярными сигналами, такими как треугольная волна, прямоугольная волна, периодическая волна, пилообразная волна, синусоида и т. Д. Постоянный ток графически представлен прямой линией.
  • Переменный ток распространяется на большие расстояния с некоторыми потерями, в то время как постоянный ток передает на очень большие расстояния с незначительными потерями.
  • Переменный ток преобразуется в постоянный с помощью выпрямителя, а постоянный ток преобразуется в переменный с помощью инвертора.
  • Немногие подстанции требуют генерации и передачи переменного тока. Дополнительные подстанции требуют передачи постоянного тока.
  • Переменный ток применяется в промышленности, на фабриках и в быту. Постоянный ток в основном используется в электронном оборудовании, импульсном освещении, гибридных транспортных средствах, гальванике, электролизе, для возбуждения обмотки ротора и т. Д.

Запомните

Постоянный ток опаснее постоянного переменного тока. При переменном токе величина тока становится высокой и низкой через равные промежутки времени, а при постоянном токе величина остается неизменной. Когда человеческое тело подвергается электрошоку, переменный ток входит в тело и выходит из него через равные промежутки времени, в то время как постоянный ток постоянно касается тела.

.

AC HotStick Детектор переменного тока, диапазон 120–46 кВ, 3 режима чувствительности

Детектор

AC Hot Stick с безопасного расстояния предупреждает вас о наличии открытых устройств, находящихся под высоким электрическим напряжением.

AC Hot Stick заранее предупреждает вас звуковым сигналом и мигающим светом о наличии высокого переменного напряжения, без необходимости прикасаться к поверхности, находящейся под опасным напряжением. Акустический сигнал, излучаемый AC Hot Stick, и мигающий визуальный сигнал светодиодного диода увеличиваются по частоте по мере приближения к источнику напряжения.

Товар недоступен. Дата доставки неизвестна.

Преимущества металлоискателя HotStick
  • Раннее предупреждение о высоком напряжении
  • Безопасность и простота использования
  • Исключительная чувствительность.
  • Запатентованные системы обеспечивают широкий диапазон работы.
  • Недорогой, прочный, надежный Портативный, с батарейным питанием
  • Необходим для технического спасения.
  • Для частот до 100 Гц


Этот инструмент нашел множество применений, в частности, среди технических аварийно-спасательных подразделений, пожарных бригад и машин скорой помощи при спасении пострадавших в автомобильных авариях, а также во время поисковых работ в городских и сельских районах и при работе бригад по удалению упавших деревьев после штормов и дождей. бури.

Промышленные пользователи и все, кто может столкнуться с риском поражения электрическим током при работе, выиграют от использования AC Hot Stick. Хотя этот прибор не может обнаруживать напряжение в полностью экранированных проводниках, что предотвращает «утечку» сигнала, он может обнаруживать ток, протекающий в земле рядом с контактом с проводником, или выход сигнала «через утечки в изоляции».

Это устройство простое в использовании, имеет встроенную функцию самотестирования, а его прочная конструкция и усовершенствования, внесенные в соответствии с предложениями наших клиентов, сделали его безопасным инструментом, признанным и уважаемым многими пользователями.

Описание датчика тока Hotstick

Диапазон обнаружения
Область AC Hot Stick, отмеченная красной полосой, указывает на сенсорную часть электроники. AC Hot Stick обладает уникальной способностью предупреждать пользователя о наличии высокого напряжения с большого расстояния. Расстояние, на котором дается предупреждение, зависит от ряда факторов.

Дальность обнаружения в основном зависит от:

  • Настройки переключателя режимов на AC Hot Stick.
  • Значения напряжения переменного тока: чем выше напряжение, тем раньше появляется предупреждение.
  • Размер зоны под напряжением: автомобиль под напряжением будет отображаться быстрее, чем открытые контакты сетевой розетки, когда кабель и розетка экранированы металлическими корпусами и заземлены.
  • Расстояния от источника или экранирующих поверхностей: когда они находятся высоко над землей, медленно висящие кабели AC Hot Stick будут восприниматься на большем расстоянии, чем кабели, покрытые землей или листьями.

Предупреждение

Инструмент предназначен только для профессионального использования. Он служит для обнаружения неэкранированных фазных проводов с опасными потенциалами переменного напряжения. Обращайтесь со всеми кабелями, как если бы они были под напряжением. Это устройство не обнаруживает постоянного и переменного напряжения в экранированных кабелях и проводах в заземленных трубках или металлических корпусах.

Технические характеристики HotStick

Чувствительность, переключаемая извне 3 диапазона
Дальность обнаружения: диапазон обнаружения или чувствительность, определяемая как расстояние между AC Hot Stick и токоведущим проводом, с AC Hot Stick, удерживаемым в наивысшем положении индикации.«Обнаружение» сигнала определяется как скорость прерывания звукового сигнала, состоящего как минимум из одного звукового сигнала каждые две секунды.

Типичное расстояние обнаружения в метрах:

Напряжение Частота Лот Настройка чувствительности
Высокая Низкий Сосредоточено

120 В
220 В

60 Гц
50 Гц

Одинарный кабель 1,8 м над землей

4.6 м

0,9 м

90 134 150 мм

120 В
220 В

60 Гц
50 Гц

Проволока, лежащая на влажной почве

0,9 м

90 134 150 мм

25 мм

7,2 кВ
16 кВ

60 Гц
50 Гц

ВЛ (одиночный изолятор)

65 кв.м

21 метр

6 м

46 кВ

60 Гц

ВЛ
(несколько изоляторов)

> 150 м

> 60 м

> 20 м


Индикация:
звуковой и световой сигнал (светодиод) прерывистая скорость звука увеличивается (или уменьшается) по мере того, как вы приближаетесь (дальше) от проводника.
Диапазон частот: от 20 до 100 Гц переменного тока
Самотестирование: встроенное трехсекундное испытание при включении питания
Изоляция: Пластиковый корпус из ПВХ
Примечание: Избегайте прямого контакта с проводами высокого напряжения.
Безопасность: Внутренняя безопасность прибора
Батареи: 4xAA Alkaline, NEDA 15A, Duracell MN 1500 или аналогичный
Срок службы батареи: Непрерывная работа: 300 часов Стандартное использование 1 год
Проверка батареи: Встроенный с предупреждением о разряженная батарея
Замена батареи: требуется снятие крышки
Водонепроницаемость: брызгозащищенный корпус
Диапазон температур:
При эксплуатации: от 30 до + 50 ° C
Хранение и транспортировка: от -40 до + 70 ° C
Размеры: Диаметр 45 мм x длина 521 мм
Вес с батареями: 570 г
Вес упаковки: 10 г
Для заказа:
AC HOT Stick, номер по каталогу BN 9005/02
Включает кейс для переноски и 4 щелочные батареи AA (установлены).

Приложения
Спасение и поиск в городских районах:
Обнаружение неизвестных и неэкранированных источников потенциально опасных переменных напряжений. Проверка правильности отключения напряжения. Пожарная служба: Выявление непосредственного присутствия высокого напряжения и опасностей, связанных с электропроводкой, во время тушения, тушения и проведения расследований после пожара.

Автомобильные аварии: Быстрый осмотр места происшествия и транспортного средства на предмет потенциальных опасностей от линий электропередачи переменного тока.Проверка и контроль отключения напряжения в сети. Спасение в закрытых помещениях: проверка отключения напряжения и надлежащего отключения электроэнергии на входе в закрытые помещения, а также контроль отключения питания машин и оборудования, которые могут представлять опасность при случайном включении.

Опасные материалы: Избегайте риска поражения электрическим током или взрыва из-за коротких замыканий и электрических дуг.

Стихийные бедствия: После землетрясений, штормов, ледяных бурь или наводнений для выявления токоведущих проводов, проложенных на дорогах или в частях обрушившихся или затопленных зданий.Быстрый контроль степени сбоя энергии.

Восстановление питания: Предупреждение о кабелях под напряжением, спрятанных под упавшими деревьями, или об опасности от движущихся генераторов.

Отрасль: Во время заводских ремонтов или аварийно-спасательных работ на производстве для проверки отключения напряжения, обнаружения других источников напряжения или проверки заземления машин.

Земляные работы: Расположение потенциальных источников поражения электрическим током при проведении аварийно-спасательных работ.

Полиция: Обнаружение наличия переменного напряжения, предотвращение опасностей на местах происшествий или во время обыска, ареста и расследования.

.

Как измерить напряжение и силу тока

С помощью мультиметра:

При использовании мультиметра следует учитывать несколько основных моментов:

  • диапазон измеряемой величины - выберите диапазон, который больше ожидаемого значения измерения, но является минимально возможным (выбор слишком большого диапазона приведет к снижению точности измерения) - например, если вы хотите измерить напряжение в розетка с ожидаемым значением 230 В и возможными диапазонами 2, 20, 200, 700 и 1000, лучшим выбором будет диапазон 700 В - это наименьший из диапазонов, превышающих ожидаемое значение.При проверке напряжения на аккумуляторе 9 В лучшим выбором будет диапазон 20 В, а при проверке напряжения на аккумуляторе 1,5 В - диапазон 2 В.
  • тип изменчивости измеренного значения - при измерении напряжения или тока тип изменчивости является чрезвычайно важным элементом - измерение, например, переменного напряжения с помощью вольтметра, адаптированного к постоянному напряжению, приведет к ошибочному результату измерения. На разных мультиметрах используется разная маркировка:
Измеренная величина и тип волатильности Условное обозначение Разметка текста
DC DCV
Напряжение переменного тока ACV
Постоянный ток DCA
Переменный ток ACA

Как измерить напряжение 9000 3

Напряжение измеряется подключением вольтметра параллельно с к приемнику:


Как измерить ток 9000 3

Напряжение измеряется путем последовательного подключения амперметра к приемнику (очень низкое внутреннее сопротивление может вызвать короткое замыкание и необратимое повреждение амперметра при параллельном подключении к приемнику):

.

Смотрите также