+7(499) 136 06 90

+7(495) 704-31-86

sales@teplogidromash.ru

Устройство котла твг 8ми газоходов


1. Принцип работы и описание конструкции водогрейного котла твг‑8м

Реферат

Пояснительная записка содержит страниц, таблиц, 21 источников.

Объект исследования – тягодутьевое оборудование котла ТВГ-8М на Бородинской котельной в г. Запорожье.

Цель проекта – аэродинамический расчет котла ТВГ-8М.

Метод исследования – расчетно-графический с использованием стандартных методик.

Предлагается произвести тепловой и аэродинамические расчеты котла ТВГ-8М и по результатам расчетов установить необходимое тягодутьевое оборудование.

Проект включает в себя расчет расхода топлива котла, определение объемов воздуха и продуктов сгорания, подсчет энтальпий, расчет геометрических характеристик нагрева котла, тепловой и аэродинамический расчеты котла, а также разработку функциональной схемы автоматического управления котла, расчет выброса вредных веществ в окружающую среду и определение технико-экономических показателей проекта.

ВОДОГРЕЙНЫЙ КОТЕЛ, ПОВЕРХНОСТИ НАГРЕВА, ТОПКА, КОТЕЛЬНЫЙ ПУЧОК, ЭКОНОМАЙЗЕР, ТЕПЛОВОЙ РАСЧЕТ, АЭРОДИНАМИЧЕСКИЙ РАСЧЕТ, КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ, ТЕМПЕРАТУРА УХОДЯЩИХ ГАЗОВ, ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ.

Содержание

Введение

1. Принцип работы и описание конструкции водогрейного котла ТВГ‑8М

1.1 Конструкция котла ТВГ-8М

1.2 Особенности работы котла ТВГ-8М №5 на котельной Бородинского м-на г. Запорожья

2. Специальная часть

2.1 Расчет топлива и продуктов сгорания за котлом ТВГ‑8М

2.2 Тепловой баланс котла

2.3 Расчет теплообмена в поверхностях нагрева

2.4 Аэродинамический расчет тракта продуктов сгорания

3. Тепловая автоматика и измерение

3.1 Техническая характеристика материалов и оборудования

4. Охрана труда

4.1 Характеристика котельной и общие вопросы техники безопасности

4.2 Основные вредности и опасности в котельной

4.3 Освещение

4.4 Вентиляция

4.5 Общие требования пожарной безопасности к оборудованию

4.6 Загрязнение атмосферы

4.7 Очистка выбросов от пыли в энергетике

4.8 Расчет валовых выбросов загрязняющих веществ

5. Экономика

5.1 Предварительные замечания к расчетам

5.2 Расчет заработной платы бригады по монтажу

5.3 Расчет затрат на электроэнергию

Заключение

Список литературы

Введение

Основным направлением развития энергетики является централизованная тепловой энергии. План электрификации страны (ГОЭЛРО), основанный на сооружении крупных районных электростанций, предопределил развитие другого типа электростанций, предназначенных для комбинированной выработки энергии.

Наиболее интенсивно районное теплоснабжение от котельных в городах началось с 1960 года, когда котлостроительными заводами был освоен выпуск водогрейных котлов большой мощности.

От тепловых сетей получают тепло сотни тысяч жилых и общественных зданий, тысячи промышленных предприятий.

В быту широко используется теплота низкого и среднего потенциала. На отопление и горячее водоснабжение жилых, общественных и промышленных зданий расходуется большое количество топлива.

При гигантском росте теплопотребления от районных котельных важное значение принимают вопросы экономии топлива, рациональное сочетание с обеспечением необходимых санитарно-гигиенических условий в жилых домах, общественных и производственных помещениях должно быть тесно увязано с максимальной экономией топливно-энергетических ресурсов.

Средством экономии топливно-энергетических ресурсов является реконструкция и автоматизация процессов в существующих котельных, снижение потерь тепла в котельных и тепловых сетях.

1.1 Конструкция котла твг-8м

Одной из наиболее простых конструкций стальных котлов является предложенный Институтом использования газа АН УССР водогрейный котел типа ТВГ производительностью 4,7 и 8,3 МВт (4 и 8 Гкал/ч). Котел состоит из нескольких экранных секций (в том числе с двусторонним освещением) из труб с диаметром 51х2,5 мм, установленных в топочной камере, и оборудован подовыми горелками. За кирпичной перегородкой имеется пучок труб, образующих конвективную поверхность. Вход дымовых газов в пакет этой поверхности сверху, выход – внизу. Продукты сгорания омывают конвективную поверхность, состоящую из труб диаметром 28х2,5 мм, со скоростью 8 м/с. Перегородки между тремя газоходами образованы за счет плавников, приваренных к трубам. Вода из тепловой сети поступает в коллектор конвективной части, проходит через трубы в газоходе и далее последовательно омывает трубы каждого экрана, разделенного для увеличения скоростей на секции. Из секций вода отводится через патрубок, расположенный в верхней части.

Высокие скорости воды – около 1 м/с получены за счет деления пучка труб конвективного газохода на три части, а каждого экрана – на четыре части. Это привело до увеличения гидравлического сопротивления котла до 4 МПа (4 кгс/см2), что превышает рекомендованное типажом значение.

Топочная камера котла имеет теплонапряжение 4 кВт/м3 или 235·103 ккал/(м3·ч), число подовых горелок равно числу панелей экранов без одной. Под огневыми каналами для распределения воздуха установлен металлический лист с отверстиями. Вентилятор имеет напор 0,5–1 кПа (50–100 кгс/см2), поскольку к горелкам подводится природный газ среднего давления.

Значительная скорость дымовых газов и наличие пучка поперечно омываемых труб с большим числом рядов обеспечили необходимость установки дымососа с напором около 1 кПа (100 кгс/см2).

Котлы ТВГ при испытаниях в эксплуатации подтвердили основные проектные технико-экономические показатели.

1.2 Особенности работы котла твг-8м №5 на котельной Бородинского м-на г. Запорожья

1.2.1 Устройство поверхностей нагрева котла твг-8м

Котел состоит из радиационной и конвективной поверхностей нагрева. Радиационная поверхность нагрева котла состоит из пяти вертикальных топочных экранов, три из которых являются двухсветными, одного топочного, переходящего во фронтовой.

Вертикальные топочные экраны состоят из двух коллекторов (верхнего и нижнего) Ø 159х6 мм, в которые вварены 40 вертикальных труб Ø 51х2 мм с шагом 75 мм. Высота секции (экрана) в осях коллекторов 3400 мм, расстояние между секциями 740 мм.

Потолочный экран состоит из 32 труб Ø 51х2 мм (по 8 труб между вертикальными топочными экранами), вваренных в горизонтальные верхний и нижний (фронтовой) коллекторы Ø 159х6 мм. Часть потолочного экрана в верхней части передней степени топки образует фронтовой экран.

Все коллекторы котла, за исключением верхнего коллектора потолочного экрана, находятся внутри котла. Верхние коллекторы вертикальных топочных экранов имеют перегородки, которые делят экраны на две части (по 20 труб в каждой).

Для последовательного движения воды каждая часть одного экрана соединена с другим экраном перепускными трубами. Установленными на верхних коллекторах вертикальных экранов.

Конвективная поверхность состоит из 16 секций. Каждая секция состоит из вертикального стояка-коллектора Ø 57х3 мм. В который вварено 16 Y-образных змеевиков из труб Ø 28х3 мм. Каждый стояк-коллектор разделен 4-я заглушками на пять частей.

studfiles.net

Расчет котла ТВГ-8М

Реферат

Пояснительная записка содержит страниц, таблиц, 21 источников.

Объект исследования – тягодутьевое оборудование котла ТВГ-8М на Бородинской котельной в г. Запорожье.

Цель проекта – аэродинамический расчет котла ТВГ-8М.

Метод исследования – расчетно-графический с использованием стандартных методик.

Предлагается произвести тепловой и аэродинамические расчеты котла ТВГ-8М и по результатам расчетов установить необходимое тягодутьевое оборудование.

Проект включает в себя расчет расхода топлива котла, определение объемов воздуха и продуктов сгорания, подсчет энтальпий, расчет геометрических характеристик нагрева котла, тепловой и аэродинамический расчеты котла, а также разработку функциональной схемы автоматического управления котла, расчет выброса вредных веществ в окружающую среду и определение технико-экономических показателей проекта.

ВОДОГРЕЙНЫЙ КОТЕЛ, ПОВЕРХНОСТИ НАГРЕВА, ТОПКА, КОТЕЛЬНЫЙ ПУЧОК, ЭКОНОМАЙЗЕР, ТЕПЛОВОЙ РАСЧЕТ, АЭРОДИНАМИЧЕСКИЙ РАСЧЕТ, КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ, ТЕМПЕРАТУРА УХОДЯЩИХ ГАЗОВ, ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ.

Содержание

Введение

1. Принцип работы и описание конструкции водогрейного котла ТВГ 8М

1.1 Конструкция котла ТВГ-8М

1.2 Особенности работы котла ТВГ-8М №5 на котельной Бородинского м-на г. Запорожья

2. Специальная часть

2.1 Расчет топлива и продуктов сгорания за котлом ТВГ 8М

2.2 Тепловой баланс котла

2.3 Расчет теплообмена в поверхностях нагрева

2.4 Аэродинамический расчет тракта продуктов сгорания

3. Тепловая автоматика и измерение

3.1 Техническая характеристика материалов и оборудования

4. Охрана труда

4.1 Характеристика котельной и общие вопросы техники безопасности

4.2 Основные вредности и опасности в котельной

4.3 Освещение

4.4 Вентиляция

4.5 Общие требования пожарной безопасности к оборудованию

4.6 Загрязнение атмосферы

4.7 Очистка выбросов от пыли в энергетике

4.8 Расчет валовых выбросов загрязняющих веществ

5. Экономика

5.1 Предварительные замечания к расчетам

5.2 Расчет заработной платы бригады по монтажу

5.3 Расчет затрат на электроэнергию

Заключение

Список литературы

Введение

Основным направлением развития энергетики является централизованная тепловой энергии. План электрификации страны (ГОЭЛРО), основанный на сооружении крупных районных электростанций, предопределил развитие другого типа электростанций, предназначенных для комбинированной выработки энергии.

Наиболее интенсивно районное теплоснабжение от котельных в городах началось с 1960 года, когда котлостроительными заводами был освоен выпуск водогрейных котлов большой мощности.

От тепловых сетей получают тепло сотни тысяч жилых и общественных зданий, тысячи промышленных предприятий.

В быту широко используется теплота низкого и среднего потенциала. На отопление и горячее водоснабжение жилых, общественных и промышленных зданий расходуется большое количество топлива.

При гигантском росте теплопотребления от районных котельных важное значение принимают вопросы экономии топлива, рациональное сочетание с обеспечением необходимых санитарно-гигиенических условий в жилых домах, общественных и производственных помещениях должно быть тесно увязано с максимальной экономией топливно-энергетических ресурсов.

Средством экономии топливно-энергетических ресурсов является реконструкция и автоматизация процессов в существующих котельных, снижение потерь тепла в котельных и тепловых сетях.

1. Принцип работы и описание конструкции водогрейного котла ТВГ 8М

1.1 Конструкция котла ТВГ-8М

Одной из наиболее простых конструкций стальных котлов является предложенный Институтом использования газа АН УССР водогрейный котел типа ТВГ производительностью 4,7 и 8,3 МВт (4 и 8 Гкал/ч). Котел состоит из нескольких экранных секций (в том числе с двусторонним освещением) из труб с диаметром 51х2,5 мм, установленных в топочной камере, и оборудован подовыми горелками. За кирпичной перегородкой имеется пучок труб, образующих конвективную поверхность. Вход дымовых газов в пакет этой поверхности сверху, выход – внизу. Продукты сгорания омывают конвективную поверхность, состоящую из труб диаметром 28х2,5 мм, со скоростью 8 м/с. Перегородки между тремя газоходами образованы за счет плавников, приваренных к трубам. Вода из тепловой сети поступает в коллектор конвективной части, проходит через трубы в газоходе и далее последовательно омывает трубы каждого экрана, разделенного для увеличения скоростей на секции. Из секций вода отводится через патрубок, расположенный в верхней части.

Высокие скорости воды – около 1 м/с получены за счет деления пучка труб конвективного газохода на три части, а каждого экрана – на четыре части. Это привело до увеличения гидравлического сопротивления котла до 4 МПа (4 кгс/см2), что превышает рекомендованное типажом значение.

Топочная камера котла имеет теплонапряжение 4 кВт/м3 или 235·103 ккал/(м3·ч), число подовых горелок равно числу панелей экранов без одной. Под огневыми каналами для распределения воздуха установлен металлический лист с отверстиями. Вентилятор имеет напор 0,5–1 кПа (50–100 кгс/см2), поскольку к горелкам подводится природный газ среднего давления.

Значительная скорость дымовых газов и наличие пучка поперечно омываемых труб с большим числом рядов обеспечили необходимость установки дымососа с напором около 1 кПа (100 кгс/см2).

Котлы ТВГ при испытаниях в эксплуатации подтвердили основные проектные технико-экономические показатели.

1.2 Особенности работы котла ТВГ-8М №5 на котельной Бородинского м-на г. Запорожья

1.2.1 Устройство поверхностей нагрева котла ТВГ-8М

Котел состоит из радиационной и конвективной поверхностей нагрева. Радиационная поверхность нагрева котла состоит из пяти вертикальных топочных экранов, три из которых являются двухсветными, одного топочного, переходящего во фронтовой.

Вертикальные топочные экраны состоят из двух коллекторов (верхнего и нижнего) Ш 159х6 мм, в которые вварены 40 вертикальных труб Ш 51х2 мм с шагом 75 мм. Высота секции (экрана) в осях коллекторов 3400 мм, расстояние между секциями 740 мм.

Потолочный экран состоит из 32 труб Ш 51х2 мм (по 8 труб между вертикальными топочными экранами), вваренных в горизонтальные верхний и нижний (фронтовой) коллекторы Ш 159х6 мм. Часть потолочного экрана в верхней части передней степени топки образует фронтовой экран.

Все коллекторы котла, за исключением верхнего коллектора потолочного экрана, находятся внутри котла. Верхние коллекторы вертикальных топочных экранов имеют перегородки, которые делят экраны на две части (по 20 труб в каждой).

Для последовательного движения воды каждая часть одного экрана соединена с другим экраном перепускными трубами. Установленными на верхних коллекторах вертикальных экранов.

Конвективная поверхность состоит из 16 секций. Каждая секция состоит из вертикального стояка-коллектора Ш 57х3 мм. В который вварено 16 Y-образных змеевиков из труб Ш 28х3 мм. Каждый стояк-коллектор разделен 4-я заглушками на пять частей.

1.2.2 Схема циркуляции воды в котлах ТВГ-8М

Вода из теплосети поступает параллельно в два нижних коллектора конвективной поверхности, пройдя которые собирается в верхних коллекторах, а из них по ряду потолочно-фронтовых труб направляется в нижний коллектор потолочного экрана.

Из него по второму ряду потолочно-фронтовых труб вода собирается в верхнем коллекторе потолочного экрана, затем последовательно проходит через левый (со стороны фронта котла) боковой односветный экран, три двухсветных экрана и выходит в контур котельной из верхнего коллектора правого бокового экрана.

1.2.3 Тягодутьевые устройства котлов ТВГ-8М

Подача воздуха для горения газа в котле осуществляется дутьевым вентилятором типа Ц-13-50 №5 производительностью 13000 м3/ч и регулируется осевым направляющим аппаратом, установленным перед всасывающим диффузором вентилятора. Направляющий аппарат соединен рычагом с осевым исполнительным механизмом типа М30 регулятора соотношений «газ-воздух» типа Р-25.3.2.

Управление направляющим аппаратом вентилятора осуществляется автоматически или дистанционно со щита КИПиА котлов.

Продукты горения поступают из топки в конвективную часть и далее по борову удаляются дымососом типа Д 18 в дымовую трубу, а на котлах ТВГ-4Р дымовые газы из топки котла в конвективную часть котла и через экономойзер выбрасываются дымососом Д-8 в дымовую трубу. Тяга в котле (разряжение) регулируется осевым направляющим аппаратом, установленном перед всасывающим диффузором дымососа, соединенным рычагом с исполнительным механизмом М30 регулятора разряжения Р25.1.2 установленного на щите котла.

Пуск вентилятора и дымососа следует осуществлять при закрытом направляющем аппарате, чтобы избежать перегрузки двигателя и отключения его электрической защитой. Нагрузку двигателя повышают путем постепенного открывания шибера или направляющего аппарата.

1.2.4 Воздуховоды, газоходы, дымовая труба

Под полом котельной, в районе котлов ТВГ-8М установлен общий воздуховод из ж/бетона, выходящий в торец котельной и переходящий в вертикальную шахту. В верхней части вертикальной шахты установлены жалюзи для забора воздуха, подающегося в котел №6. С помещения котельной производится забор воздуха к котлам №1,2,3,4,5.

Воздуховоды обслуживаемых котлов состоят: из металлического короба, присоединенного к всосу вентилятора и ж/бетонных каналов.

Подвод воздуха к горелкам осуществляется по ж/бетонному воздухопроводу, проложенному под полом с правой стороны котла и выходящему к фронтальной стенке котла. Воздуховод из фронтальной стенки котла разделен тремя перегородками на четыре отсека. На выходе воздуховода из фундамента, установлены металлические короба с заслонкой на каждую горелку для регулирования количества воздуха, подаваемого на каждую горелку.

Для удаления продуктов горения из котла служат газоходы, выполненные из ж/бетона, футерированные кирпичем и проходящие под полом котельной. На каждом газоходе, между дымососом и дымовой трубой установлен шибер для отключения борова котла от трубы при ремонтных работах на котле. На газоходе после дымососа устанавливается взрывной клапан, закрытый листовым асбестом и служит для предотвращения разрушения газохода и дымовой трубы при взрыве газовоздушной смеси в котельных установках.

Для отвода дымовых газов в атмосферу в котельной имеется дымовая труба высотой 30 м, выполненная из красного кирпича.

Фундамент трубы бетонный, диаметр устья 1,2 м. Труба оборудована металлической лестницей и грозозащитой.

1.2.5Насосная группа

Центробежные насосы состоят из спирального корпуса, крышки корпуса, рабочего колеса, вала, подшипников, муфты сцепления, сальников уплотнения, опорного кронштейна.

Корпус насоса представляет собой чугунную отливку, внутренняя полость которой выполнена в виде спирали с диффузорным каналом и напорным патрубком. Крышка корпуса – чугунная отливка крепится к корпусу насоса шпильками и является всасывающим патрубком.

Рабочее колесо – чугунное состоит из двух дисков, соединенных пространственными или цилиндрическими лопатками. Вход жидкости в рабочее колесо осевой. Возникающее во время работы осевое усиление воспринимается подшипниками. Рабочее колесо закрыто на валу с помощью шпонки и гайки. Рабочее колесо имеет одностороннее уплотнение, которое служит для уменьшения утечки жидкости, (циркуляция жидкости вокруг диска) и образуется одним кольцевым выступом на диске рабочего колеса и одним уплотняющим кольцом.

Вал насоса выполнен из качественной углеродистой стали. На одном конце его насаждено рабочее колесо, на другом – полумуфта. Вал имеет одну внешнюю шарикоподшипниковую опору, с густой смазкой и другую – внутреннюю. В виде бронзовой втулки, запресованной в корпус насоса. Смазка и охлаждение внутренней опоры осуществляется перекачиваемой жидкостью, для чего в корпусе имеется канал, соединяющий рабочую полость насоса с опорной втулкой. Вал насоса вращается против часовой стрелки, если смотреть со стороны привода. Привод осуществляется электродвигателем через упорную муфту.

Сальниковое уплотнение состоит из камеры, отлитой в одно целое с корпусом насоса, крышки сальника и хлопчатобумажной набивки.

Опорный кронштейн отлит из чугуна. На нем монтируются все узлы и детали насоса. В самой высокой точке корпуса имеется закрытое пробкой отверстие для выпуска воздуха из корпуса и всасывающего трубопровода при заливке насоса перед пуском. При продолжительных остановках жидкость из насоса выливается через отверстие.

При включении насоса, электродвигатель начинает вращает рабочее колесо, которое будет выбрасывать находящуюся в нем жидкость к внешнему диску рабочего колеса и в напорный патрубок, создавая разряжение в центре колеса, которое заполняется жидкостью из всасывающегося патрубка. насос нельзя пускать без предварительного осмотра, который должен производится перед каждым пуском.

При осмотре необходимо проверить:

а) состояние трубопроводов, опор, систему охлаждения;

б) наличие масла в корпусе подшипников;

в) наличие ограждения соединительной муфты и заземление электродвигателя;

г) наличие заеданий в колесе;

д) качество набивки сальника;

е) правильность установки манометров и вакуумметров.

После проверки исправности насоса, следует открыть запорный орган на всасывающем трубопроводе. Проверить заполнение насоса водой, открыв воздушную пробку, включить электродвигатель и при достижении полного числа оборотов медленно открывать запорный орган на нагнетательном трубопроводе до получения необходимого напора. При непрерывной работе необходимо следить за наличием масла в корпусе подшипников за состоянием сальником (сальник в нормальном состоянии должен слегка пропускать жидкость 15–20 капель 6 минут.), за показанием манометров, за температурой подшипников (она не должна превышать 70оС), работой электродвигателя и т.д., не производить никаких работ на работающем насосе. При остановке насоса необходимо вначале медленно закрыть запорный орган на нагнетательной линии и затем выключить электродвигатель.

1.2.6 Назначение каждой насосной группы с краткой характеристикой

Циркуляция воды через котлы и далее в системе отопления осуществляется сетевыми насосами типа 6НДС – 60. Сетевая вода из обратного трубопровода теплосети через грязевик поступает на всос сетевых насосов под давлением 2,5 кг/см2.

После сетевых насосов вода поступает под давлением 10–11 кг/см2 во входные коллекторы котлов. После котлов нагретая вода поступает в выходной коллектор и далее по подающему трубопроводу к потребителю. Располагающий напор 66–65 м.в.ст.

Включение и отключение сетевого полюса производится со щита вспомогательного оборудования ключом управления «КУ». При аварийном отключении работающего сетевого насоса автоматически подается импульс на включение резервного насоса. Любой сетевой насос может быть «рабочим» или «резервным». Выбор резервного насоса производится предварительно переключателем ключа блокировки «ПБ» поворотом его в положение «резерв». При кратковременных исчезновениях напряжениях «миганиях» автоматически производится самозапуск работающего сетевого насоса. Для аварийной остановки насоса возле каждого насоса находится выключатель безопасности «ВБ». При включении сетевого насоса в работу ключ переключателя блокировки должен находиться в положении «Рабочий». Поворотом ключ «КУ» по часовой стрелке до упора ввести в работу сетевой насос. Задвижки на нагнетании этого насоса пойдет автоматически на открытие. Загорятся обе сигнальные лампочки. После полного открытия задвижки остается гореть сигнальная «открыто». Предел открытия регулируется отстройкой концевых выключателей. При отключении сетевого насоса ключ «КУ» повернуть в положение «отключено». Задвижка на нагнетании отключенного насоса автоматически идет на «закрытие» по истечении времени самозапуска сетевого насоса 2–2,5 с. Предел закрытия регулируется концевыми выключателями. Для поддержания температуры воды, подаваемой в котлы не ниже 70оС, установлен рециркуляционный насос НКУ-90, включаемый дистанционно со щита вспомогательного оборудования.

Температура воды на входе в котел поддерживается путем подачи выходящей из котлов воды рециркуляционным насосом в коллектор входа в котлы. Регулировка количества подаваемой воды рециркуляционным насосом на котлы осуществляется регулирующим клапаном Ш 150 мм, установленным после насоса на рециркуляционном трубопроводе. Регулирующий клапан соединен рычагами с исполнительными механизмом регулятора рециркуляции. Управление регулирующим клапаном осуществляется автоматически или дистанционно со щита КИП и вспомогательного оборудования. Для восполнения утечек сетевой воды на тепловых сетях, подпитка оборотной магистрали в котельной осуществляется умягченной деаэрированной водой при помощи подпиточных насосов типа КС-20-50 и типа КС-10-110-4. Давление оборотной магистрали поддерживается автоматически регулятором подпитки типа Р 25–1.2 и исполнительным механизмом в пределах 3,5 кг/см2. При выходе из строя регулятора, регулировка осуществляется вручную задвижкой №506, установленной на запорной линии узла подпитки количество подпиточной воды регистрируется самопишущим электронным прибором. Насосы холодной воды типа 2К – служат для увеличения давления холодной воды, подаваемой на котельную при понижении ее давления в газопроводе.

Насосная группа состоит из:

а) насосов рабочей жидкости 2К, служащих для перекачки воды из бака – газоотделителя, через сопло эжектора, который отсасывает выпар из деаэроционной колонки, а тем самым создает разряжение в ней;

б) насоса взрыхления фильтров типа 2К-9, служащего для подачи воды при взрыхлении фильтров из бака подсоленной воды.

1.2.7 Водоподготовка и водохимический режим

Для нужд ХВО используется питьевая вода из городского водопровода. Производительность ХВО – 25 м3/час. Сырая вода поступает от магистрального водопровода Ш 133 мм через ввод на теплообменник холодной (сырой) воды, где нагревается до температуры 40оС и далее поступает на №а – катионовые фильтры.

Давление газа на котел ОБМ -1 кгс/см2 6

Давление газа на горелку ОБМ -1 кгс/см2 23

В п установлен регулятор давления РДУК – 200, предназначенный для понижения давления газа до 0,38 кГц/см2 и поддержания этого давления независимо от количества работающих котлов и нагрузки. Нормы качества воды для котельных города Запорожья приведены в табл. 1.1

Таблица 1.1 – Нормы качества воды

№ п.п. Наименование объекта контроля Показатели качества воды
Температура (оС) Содержание растворенного кислорода, мкг/л Значение рН Свободная СО2, мг/л Жесткость общая мкг/л Содержание соединений железа, мг/л Взвешенные вещества, мг/л Содержание хлоридов, мг/л
1 2 3 4 5 6 7 8 9 10
1 Сетевая вода 20 8,3–9,5 Не допуск 350 0,5 5 не более Не более, чем на 30 исх. воды
2 Подпиточная вода 50 8,3–9,5 Не допуск 200 5 не более Не более, чем на 30 исх. воды
3 Умягч. вода Не допуск 200 5 не более Не более, чем на 30 исх. воды
4 Вода для ГВС

50

Т75

100 Не допуск

2. Специальная часть

2.1 Расчет топлива и продуктов сгорания за котлом ТВГ-8М

Элементарный состав рабочей массы топлива, %

Метан СН4=92,8

Двуокись углерода СО2=0,1

Этан С2Н6=3,9

Сероводород Н2S=0

Пропан С3Н8=1,0

Кислород О2=0

Бутан С4Н10=0,4

Окись углерода СО=0

Пентан С5Н12=0,3

Водород Н2=0

Азот N2=1,5

Теплота сгорания нижняя сухого газа, МДж/м3

Qcн=37300

Объем воздуха, теоретически необходимого для полного сгорания топли – ва, м3/ м3

Voв=0,0476 [0,5CO+0,5 Н2+1,5 Н2S+Σ (m+n/4)* Cmn – О2] = 0,0476 [0,5*0+0,5*0+1,5*0+(1+4/4)*92,8+(2+6/4)*3,9+(3+8/4)*1+(4+10/4)*0,4+(5+12/4)*0,3) – 0]=9,5724

Объем продуктов сгорания, которые образовались вовремя сгорания топлива с теоретическим объемом воздуха, м3/ м3

– теоретический объем азота

VoN2=0,79 Voв+0,01N2=0,79*9,5724+0,01*1,5=7,5772

– теоретический объем трехатомных газов

VoRО2=0,01 (СО2+СО+ Н2S+ Σm CmHn) = 0,01 (0,1+0+0+92,8+2*3,9+3*1+4*0,4+5*0,3)=1,068

– теоретический объем водяных паров

VoН2О=0,01 (Н2+ Н2S+Σn/2 CmHn+0,124dг*0,124 dв Voв) = 0,01 (0+0+2*92,8+3*3,9+4*1+5*0,4+6*0,3+0,124*10+0,124*13*9,5724)=2,2177

Избыток воздуха в конце топки ά m=1,10.

Для принятой конструкции и компоновки поверхностей нагрева используется присосы воздуха в газоходах:

– котельный пучок Δ ά к.п.=0,1

– водяной экономайзер Δ ά в.э.=0,08

Избытки воздуха в газоходах:

В конце топки αт=1,1

Полный объем продуктов сгорания при горении топлива с избытком воздуха, с учетом присосов, м3/ м3

Voг= VoRО2+ VoN2+ VoН2О+(ά ср-1) Voв

Объем водяных паров при горении топлива с избытком воздуха, с учетом присосов, м3/ м3

VН2О= VoН2О+0,0161 (ά ср-1) Voв

Объемная доля водяных паров

rh3O = VН2О/ Voг

Объемная доля трехатомных газов

rRO2 = VoRО2/ Voг

Численные значения величин, подсчитанных по приведенным выше формулам, указаны в таблице 2.1

Таблица 2.1 – Объемные характеристики продуктов сгорания

Наименование величина и ее обозначение Газоходы котла
топка котельный пучок водяной экономайзер
Коэффициент избытка воздуха, ά» 1,1 1,2 1,28
Средний коэф-нт избытка воздуха в газоходе, άср 1,1 1,15 1,24
Объем водяных паров в продуктах сгорания, Vh3O,м3/м3 2,2331 2,2408 2,7547
Полный объем продуктов сгорания, Vг,м3/м3 11,8355 12,321 13,1973
Объемная доля водяных паров, rh3O 0,1887 0,1818 0,1708
Объемная доля трехатомных газов, rRO2 0,0902 0,0866 0,0809

Энтальпия воздуха (МДж/м3) теоретически необходимого для горения топлива, в приделах возможных температур продуктов сгорания, МДж/м3

Ioв= Voв(cν)в*10-3

где (cν)в- удельная энтальпия воздуха при соответствующей температуре, кДж/ м3

Энтальпия газообразных продуктов сгорания при горении с теоретическим объемом воздуха в интервале тех же температур, МДж/м3

Ioг= [(cν)RO2*VRО2+(cν)N2* VoN2+(cν)h3O* VoН2О]* 10-3

Численные значения энтальпий, подсчитанных по приведенным выше формулам, указаны в таблице 2.2

Таблица 2.2 – Энтальпии воздуха и продуктов сгорания в газоходах котла

ν,°C Iво, кДж/кг Iго, кДж/кг α «т=1,1 α «к.п.=1,2 α «эк=1,28
топка котельный пучок водяной экономайзер
100 1267,424 966,5408
200 2550,1891 1958,54
300 3858,424 2978,809 3904,831
400 5190,021 4031,752 5277,357
500 6553,705 5114,213 6687,103
600 7949,476 6214,105 7406,527 8121,979
700 9385,355 7346,704 8754,507
800 10829,26 8510,854 10135,24
900 12273,16 9701,861 10929,18 11542,83
1000 13757,17 10905,06 12280,78
1100 15281,28 1213,42 13641,54
1200 16805,4 13329,27 15009,81
1300 18329,52 15840,63 17673,58
1400 19893,74 16468,8 18458,17
1500 21457,97 19379,5 21525,3
1600 23022,2 20836,03 23138,25
1700 24586,42 22314,26 24772,91
1800 26150,65 23792,5 26407,56
1900 27754,98 25273,07 28048,57
2000 29359,32 26773,01 29708,96
2100 30963,65 28275,29 31371,66
2200 32567,99 29777,58 33034,37

2.2 Тепловой баланс котла

Изложенные ниже расчеты, выполнены с целью определения коэффициента полезного действия (КПД) котла и расхода топлива.

Теплота сгорания единицы объема сухого газа, МДж/м3

Qcн=37,300

Подогрев топлива и воздуха вне котельного агрегата не предусмотрен. Отсутствует также форсуночное дутье. Поэтому Qтл=0 Qв.вн.=0 Qф=0.

Тогда располагаемая теплота, МДж/м3

Qрр= Qcн+Qтл+ Qв.вн.+ Qф=37,300

Потери теплоты и коэффициент полезного действия (КПД) котла.

Температура холодного воздуха, °C

tх.в.=30

Энтальпия теоретически необходимого воздуха, кДж/м3

Ioх.в.= 382,896

Температура уходящих газов, °C

νух=152

Коэффициент избытка воздуха в уходящих газах

α ух=1,28

Энтальпия продуктов сгорания при этой температуре (таблица 1.2), МДж/м3

Iух=1,24499

Потери теплоты с уходящими газами, %

q2=[(Iух- α ух* Ioх.в.)/ Qрр]*102=[(1,95854–1,28*0,289)/37,3]* 102=4,55

Потеря теплоты от химической неполноты сгорания, %

q3=0,5

Потеря теплоты от механического недожога, %

q4=0

Потеря теплоты поверхностями котла и экономайзера, %

q5=2,8

Суммарная потеря теплоты котельным агрегатом, %

Σ= q2+ q3+ q4+ q5=4,25+0,5+0+2,8=7,85

Коэффициент полезного действия котельного агрегата, %

ηк.у.=100- Σ qпот=100–7,55=92,15

Расход топлива при номинальной тепловой нагрузке.

Тепловая нагрузка при работе котла в водогрейном режиме, МВт

Qк=8

Расчет топлива котла при расчетной нагрузке, м3/с

В=Qк*100/ Qрр* ηк.у.=8*100/37,3*92,15=0,1725

Расчетный расход топлива, м3/с

Вр=В=0,287.

2.3 Расчет теплообмена в поверхностях нагрева

2.3.1 Предварительные замечания к расчетам

Расчет теплообмена выполнен целью получения результатов необходимых для последующего аэродинамического расчета. В основу положена схема движения нагреваемой воды.

Теплообмен в топке и следующей за ней камере догорания идентичен и осуществляется передачей теплоты излучением газов. На этом основании расчет теплообмена в этих поверхностях выполнен совместно, по суммарным их геометрическим характеристикам с определением температуры продуктов сгорания на входе в котельный пучок.

Расчет теплообмена в топке и камере догорания изложен в табл. 4.1. из него следует, что принятая как возможная тепловая мощность Q = 8,3 (8 Гкал/ч) может быть реализована, поскольку теплопередачей обеспечивается температура продуктов сгорания в конце топки, не превосходящая допустимой при сжигании топлива.

В табл. 4.2. приведен расчет теплообмена в котельном пучке. Из него следует, что количество теплоты, необходимое для нагрева воды от t’к = 70оС до t»к = 150оС условиями теплообмена обеспечивается. Расхождение Qб и Qт составляет 0,56%, что значительно меньше допустимого нормами.

В табл. 4.3. приведен расчет теплообмена в экономайзере. Расчет теплообмена в экономайзере выполнен применительно к условию, что массовая скорость воды в нем будет 730 кг/см2 и соответствующий ей расход Gэк = 6,667 кг/с. При этом температура воды из экономайзера не будет превосходить 80оС. Температура уходящих газов установленная расчетом (tух = 152оС) не отличается от принятой при составлении теплового баланса. Поскольку разница не велика.

2.3.2 Расчет теплообмена в топке

Избыток воздуха в конце топки

Температура воздуха подаваемого в топку, оС

Энтальпия воздуха при этой температуре, МДж/м3

Присос воздуха в топку

Тепло, вносимое в топку воздухом, МДж/ м3

Потери теплоты от химической неполноты сгорания, %

Полезное тепловыделение в топке, МДж/м3

Теоретическая температура, отвечающая полезному тепловыделению, оС

Температура продуктов сгорания на выходе из топки принимается, оС

Энтальпия продуктов сгорания при этой температуре, МДж/м3

Средняя объемная теплоемкость продуктов сгорания, МДж/м3К

Толщина излучающего газового слоя в топке и в камере сгорания, м

Давление газов в топке, МПа

Объемная для водяных паров в продуктах сгорания

Объемная доля трехатомных газов

Суммарная объемная доля

Суммарное парциальное давление трехатомных газов и водяных паров в топке, МПа

Коэффициент ослабления лучей газами, 1/(м·МПа)

Степень черноты газового потока

Соотношение углерода и водорода в составе рабочего топлива

Коэффициент ослабления лучей сажистыми частицами, 1/(м·МПа)

Степень светящейся части пламени

Коэффициент усреднения степени черноты факела

Эффектная степень черноты факела

Среднее значение коэффициента тепловой эффективности

Относительное местоположение максимума температур в топке

Степень черноты топки

Параметр температурного поля

Коэффициент сохранения теплоты

Эффективная лучевоспринимающая поверхность, м2

Температура продуктов сгорания на выходе из топки, 0С

Энтальпия продуктов сгорания при этой температуре, МДж/м3

Теплота, переданная поверхностям нагрева в топке и в камере догорания, МДж/м3

Температура воды на входе в радиационные поверхности топки, 0С

Энтальпия воды при этой температуре, кДж/кг

Энтальпия воды на выходе из радиационных поверхностей нагрева, кДж/кг

Температура воды на выходе из радиационных поверхностей нагрева, 0С

2.3.3 Расчет теплообмена в котельном пучке

Температура воды на входе в котельный пучок, 0С

Энтальпия воды при этой температуре, кДж/кг

Температура воды на выходе из котельного пучка, 0С

Энтальпия воды при этой температуре, кДж/кг

Средняя температура воды в котельном пучке, 0С

Количество теплоты в котельном пучке, МДж/м3

Температура газов на входе в котельный пучок, 0С

Энтальпия газов при этой температуре, МДж/ м3

Присос воздуха в газоходе котельного пучка

Энтальпия газов на выходе из котельного пучка, МДж/ м3

Температура продуктов сгорания соответствующая этой энтальпии, 0С

Температурный напор на входе газов, 0С

Температурный напор на выходе газов, 0С

Температурный напор в котельном пучке при противотоке, 0С

Средняя температура потоков газов, 0С

Средняя скорость газов в пучке, м/с

Коэффициент теплоотдачи конвекцией, Вт/(м2/К)

xreferat.com

1.1 Конструкция котла ТВГ-8М

Модернизация конструкции и технологии котла-утилизатора

...

Модернизация конструкции и технологии котла-утилизатора
2.1.5 Барабан котла

Барабан внутренним диаметром 1518 мм с толщиной стенки 36 мм предназначен для равномерного распределения питательной воды по циркуляционной системе, разделения пароводяной смеси на насыщенный пар и котловую воду...

Модернизация котла пищевого газового секционно-модульного КПГСМ-60
2.3 Техническая характеристика котла

Полезная емкость, л 60 Продолжительность разогрева, мин. 55 Предельное рабочее давление пара в рубашке, кг/см2 0,5 Габариты, мм - длина 935 - ширина 1025 - высота 1040 Масса...

4.4. Защита котла

Технологические защиты - это автоматические устройства, предохраняющие котлоагрегаты от аварий и повреждений. При чрезмерном отклонении параметров (давления, температуры, уровня и т.д.)...

Проект варочного котла сульфитной варки целлюлозы
2.1 Определение объема котла

Таблица 2.1 - Основные размеры корпуса варочного котла для сульфитного производства целлюлозы Ем-кость м3 D, мм D1, мм d, мм d1, мм H, мм h, мм h2, мм h3, мм R...

Проектирование отопительной котельной для теплоснабжения
Технические характеристики котла КВ-ГМ-30-150

Наименование величины Единица измерения Значение Номинальная теплопроизводительность Гкал/час 30 Расход воды т/час 370 Расход топлива: газ м3/час 3680 мазут кг/час 3490 Температура уходящих...

Проектирование отопительной котельной для теплоснабжения
3.2 Конструктивные характеристики котла

Топочная камера полностью экранирована трубами диаметром 603 мм с шагом 64 мм. Экранные трубы привариваются непосредственно к камерам диаметром 21910 мм. В задней части топочной камеры имеется промежуточная экранированная стенка...

Проектирование отопительной котельной для теплоснабжения
3.3 Топочное устройство котла КВ-ГМ-30-150

Котел снабжен газомазутной ротационной горелкой РГМГ-30. К достоинствам ротационных форсунок можно отнести бесшумность в работе, широкий диапазон регулирования, а также экономичность их эксплуатации...

Проектирование отопительной котельной для теплоснабжения
3.4 Тепловой расчет котла КВ-ГМ-30-150

Исходные данные: Топливо природный газ, состав (%): СН4 94,9 С2Н6 3,2 С3Н8 0,4 С4Н10 0,1 С5Н12 0,1 N2 0,9 CО2 0,4 = 36,7 МДж/м3 Объемы продуктов сгорания газообразных топлив отличаются на величину объема воздуха и водяных паров...

Расчет и конструирование парового котла
2. Характеристика котла

котел топка топливо температура Агрегаты, в испарительных трубах которых движение рабочего тела создается под воздействием напора циркуляции, естественно возникающего при обогреве этих труб...

Расчет судового парового котла КГВ 063/5
4. Расчет топки котла

Цель расчета - определение температуры дымовых газов на выходе из топки и величины тепловосприятия при заданной величине радиационной поверхности нагрева...

Тепловий та гідравлічний розрахунок котлеьного агрегату КВ-ГМ-100
1.2 Опис котла

Газомазутний водогрійний котел типу КВ-ГМ-100 виконаний водотрубним, прямоточним з П-образною замкненою компоновкою поверхонь нагрівання...

Тепловий та гідравлічний розрахунок котлеьного агрегату КВ-ГМ-100
1.4 Тепловий розрахунок котла КВ-ГМ-100

Для теплового розрахунку котлоагрегату необхідна таблиця «ентальпія-температура», що виконується на ЕОМ по програмі, розробленій на кафедрі «Теплотехніка та теплові двигуни» УкрДАЗТ...

Тепловой расчет котла БКЗ-160-100ГМ
1.2 Пуск котла

1. При достижении давления до рабочего котёл должен быть осмотрен с целью выявления течей, парений и других видимых дефектов. 2...

Тепловой расчет котла ДЕ16–14ГМ
1. ПРИНЦИПИАЛЬНОЕ УСТРОЙСТВО КОТЛА

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Это комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов топлива к воде и пару...

prod.bobrodobro.ru

Монастырищенский машиностроительный завод

Подробности Опубликовано 20 Сентябрь 2013 Просмотров: 5206

Продление ресурса и уменьшение расхода природного газа водогрейными котлами ТВГ-КВГ

Котлы ТВГ (ТВГ-8, ТВГ-8М, ТВГ-4р) и их развитие – КВГ (КВГ-7,56, КВГ-4,65) с параметрами 4-10 МВт, температурой воды 150/70 °С, 8 атм., разработаны Институтом газа НАН Украины и выпускаются Монастырищенским машиностроительным заводом (г. Монастырище Черкасской обл.).

Практически все котлы превысили заводской срок эксплуатации (14 лет) и продолжают эксплуатироваться. Котлы ТВГ-КВГ ремонтнопригодны и их срок службы ограничивается выходом из строя конвективной поверхности нагрева, изготавливаемой из труб диаметра Ø28×3 мм и необходимостью замены горелочных устройств. После замены этих элементов на усовершенствованные, котлы могут работать ещё 10-14 лет с повышенным КПД и уменьшенным на 4-5% расходом природного газа.

Методы модернизации котлов ТВГ-8, ТВГ-8М, ТВГ-4р, КВГ-7,56, КВГ-4,65

1. Замена газовых горелок на усовершенствованные подовые щелевые горелки 3-го поколения МПИГ-3 с профилированными соплами и дополнительной воздухораспределительной решёткой типа «кольчуга». Преимущества: неизменная геометрия сечения газовых сопел, которые прак- тически не засоряются и соотношение газ/воздух остаётся очень близким к первоначально заданным при режимной наладке, длительный ресурс эксплуатации горелки 10-14 лет.

2. Замена конвективных поверхностей нагрева – вместо труб Ø28×3 мм применены трубы Ø32×3 мм или Ø38×3 мм. Преимущества: а) увеличение диаметра трубы уменьшает гидрав- лическое сопротивление и при плохом качестве воды в системе конвективная поверхность не так быстро выходит со строя; б) за счёт увеличения поверхности нагрева повышается КПД котла.

В результате модернизации котлов ТВГ-8, ТВГ-8М, ТВГ-4р, КВГ-7,56, КВГ-4,65 указанными выше методами можно повысить КПД котлов до 94-95%, снизить расход природного газа и эмиссию монооксида углерода, продлить ресурс котлов на 10-14 лет.

В таблице приведены основные показатели котла ТВГ-8М до модернизации и после, с заменой горелочных устройств на новые подовые горелки МПИГ-3 и новой конвективной поверхность из труб Ø32#215;3 мм.

№ п/п Параметры ТВГ-8Мдо модернизации ТВГ-8Мпосле модернизации
 1. Теплопроизводительность котла, Qк, Гкал/ч 8,3 8,3
 2. Расход воды через котел, D, т/ч 104 104
 3. Гидравлическое сопротивление, ΔPк, кг/см² 3,7 1,25
 4. Аэродинамическое сопротивление, ΔН, кг/м² 101,2 102,5
 5. Температура уходящих газов, tух, °С; 197 105
 6. СО, мг/нм³ 52 34
 7. NOх, мг/нм³ 160 160
 8. КПД котла брутто, ηк, % 89,4 94,4

Модернизация, например, котла ТВГ-8 (ТВГ-8М) обеспечивает экономический эффект на одном котле, равный 253,8 тыс.грн./год, (экономию газа 172 тыс.м³/год или за 15 лет 2,6 млн.м³) по сравнению с закупкой и установкой нового заводского котла.Затраты на модернизацию одного котла ТВГ-8 (ТВГ-8М) окупаются приблизительно за 1,5 года.ПАО «Монастырищенский машиностроительный завод» осуществляет продажу, шеф-монтаж и пусконаладку, при необходимости изготавливает само- стоятельно конвективную поверхность нагрева и горелки.Как сэкономить природный газ в котельных с котлами ТВГ и КВГ.

Около половины котельных мощностью 4-30 МВт в Украине оборудованы котлами ТВГ и КВГ, мощностью 4-10 МВт, разработанными ещё в 1960-х годах Институтом газа НАНУ и серийно выпускаемыми ПАО «Монастырищенский машиностроительный завод» (ОАО «Теком»). В настоящее время в этих котлах в Украине сжигается свыше 5 млрд. м³ природного газа.Котлы показали себя надежными в эксплуатации, однако, к настоящему времени КПД котлов составляет 89÷90%, что недостаточно и, кроме того, подовые горелки и конвективные поверхности нагрева раз в 5 –10 лет требуют замены.Институтом газа НАНУ при участии Института промышленной экологии и Института технической теплофизики НАНУ и Монастырищенского маш. завода разработаны методы повышения КПД котла на 4,5÷5% путем замены существующих подовых горелок на новые подовые горелки МПИГ-3 и конвективной части котла из трубы Ø28×33 на Ø32×33 мм.Опыт 3-х летней эксплуатации 2-х котлов ТВГ-8М («Теплокоммунэнерго Киевэнерго») показал, что реконструированные котлы имеют КПД 94÷96%, что соответствует лучшим зарубежным котлам, более надежны в эксплуатации и срок их работы может быть продлен на 10÷14 лет.В результате реконструкции каждый котел ТВГ-8М дает годовую экономию природного газа 150÷180 тыс. м³, а в масштабах Украины это даст 0,3÷0,5 млрд. м³/год. Окупаемость проекта реконструкции составляет 1 год, а при необходимости очередной замены горелок и конвективной части котла – 6÷8 месяцев.Все необходимое оборудование для реконструкции изготовляется Монастырищенским машиностроительным заводом. По вопросам модернизации котлов обращаться в Институт газа НАН Украины.При необходимости экономии газа, а также плановой (неплановой) замены конвективной поверхности и горелок можно обращаться на ПАО «Монастырищенский  машиностроительный завод» Контакты.

mmzavod.com.ua


Смотрите также